Skip to main content
Log in

On the spectrum of stiffness matrices arising from isogeometric analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the spectral properties of stiffness matrices that arise in the context of isogeometric analysis for the numerical solution of classical second order elliptic problems. Motivated by the applicative interest in the fast solution of the related linear systems, we are looking for a spectral characterization of the involved matrices. In particular, we investigate non-singularity, conditioning (extremal behavior), spectral distribution in the Weyl sense, as well as clustering of the eigenvalues to a certain (compact) subset of \(\mathbb C\). All the analysis is related to the notion of symbol in the Toeplitz setting and is carried out both for the cases of 1D and 2D problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The essential range of \(f\) coincides exactly with the range of \(f\) whenever \(f\) is continuous. In this paper we will only deal with continuous functions \(f\).

  2. If \(\beta \ne 0\) then \(\mathrm{Im}\,\frac{1}{n}A_n^{[2]}\) is irreducible and \(\sigma \left( \mathrm{Im}\,\frac{1}{n}A_n^{[2]}\right) \subset \left( -\frac{11|\beta |}{12n},\frac{11|\beta |}{12n}\right) \). In (76) we have included the endpoints \(\pm \frac{11|\beta |}{12n}\) to cover the case \(\beta =0\).

  3. In this way, \(A_{n_1,n_2}^{[p_1,p_2]}\) is really a sequence of matrices, since only \(n_1\) is a free parameter. The relation \(n_2=\nu n_1\) must be kept in mind while reading this section. We point out that this request could be replaced by even milder conditions, but at the price of heavier notations.

References

  1. Aricó, A., Donatelli, M., Serra-Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26, 186–214 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Axelsson, O., Lindskog, G.: On the rate of convergence of the preconditioned conjugate gradient method. Numer. Math. 48, 499–523 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beckermann, B., Kuijlaars, A.B.J.: Superlinear convergence of Conjugate Gradients. SIAM J. Numer. Anal. 39, 300–329 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beckermann, B., Kuijlaars, A.B.J.: On the sharpness of an asymptotic error estimate for Conjugate Gradients. BIT 41, 856–867 (2001)

    Article  MathSciNet  Google Scholar 

  6. Beckermann, B., Serra-Capizzano, S.: On the asymptotic spectrum of Finite Elements matrices. SIAM J. Numer. Anal. 45, 746–769 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertaccini, D., Golub, G., Serra-Capizzano, S., Tablino Possio, C.: Preconditioned HSS method for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection–diffusion equation. Numer. Math. 99, 441–484 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

  9. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  10. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Böttcher, A., Widom, H.: From Toeplitz eigenvalues through Green’s kernels to higher-order Wirtinger–Sobolev inequalities. Oper. Theory Adv. Appl. 171, 73–87 (2007)

    Article  Google Scholar 

  12. Buffa, A., Harbrecht, H., Kunoth, A., Sangalli, G.: BPX-preconditioning for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 265, 63–70 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  14. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Book  Google Scholar 

  15. Gahalaut, K.P.S., Kraus, J.K., Tomar, S.K.: Multigrid methods for isogeometric discretization. Comput. Methods Appl. Mech. Eng. 253, 413–425 (2013)

    Article  MathSciNet  Google Scholar 

  16. Garoni, C., Manni, C., Pelosi, F., Serra-Capizzano, S., Speleers, H.: On the spectrum of stiffness matrices arising from isogeometric analysis. Technical Report TW632, Department of Computer Science, KU Leuven (2013)

  17. Golinskii, L., Serra-Capizzano, S.: The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences. J. Approx. Theory 144, 84–102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications, 2nd edn. Chelsea, New York (1984)

    MATH  Google Scholar 

  19. Hörmander, L.: Pseudo-differential operators and non-elliptic boundary problems. Ann. Math. 2, 129–209 (1966)

    Article  Google Scholar 

  20. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Manni, C., Pelosi, F., Sampoli, M.L.: Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 867–881 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Parter, S.V.: On the extreme eigenvalues of truncated Toeplitz matrices. Bull. Am. Math. Soc. 67, 191–197 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  23. Parter, S.V.: On the eigenvalues of certain generalizations of Toeplitz matrices. Arch. Ration. Math. Mech. 3, 244–257 (1962)

    Article  MathSciNet  Google Scholar 

  24. Quarteroni, A.: Numerical Models for Differential Problems. Springer, Italy (2009)

    Book  MATH  Google Scholar 

  25. Russo, A., Tablino Possio, C.: Preconditioned Hermitian and skew-Hermitian splitting method for finite element approximations of convection–diffusion equations. SIAM J. Matrix Anal. Appl. 31, 997–1018 (2009)

    Article  MathSciNet  Google Scholar 

  26. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston (1996)

    MATH  Google Scholar 

  27. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge Mathematical Library, Cambridge (2007)

    Book  Google Scholar 

  28. Serra-Capizzano, S.: Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems. BIT 34, 579–594 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Serra-Capizzano, S.: Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations. Linear Algebra Appl. 366, 371–402 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Serra-Capizzano, S.: GLT sequences as a generalized Fourier analysis and applications. Linear Algebra Appl. 419, 180–233 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Serra-Capizzano, S., Tablino Possio, C.: Spectral and structural analysis of high precision finite difference matrices for elliptic operators. Linear Algebra Appl. 293, 85–131 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  33. Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 221–222, 132–148 (2012)

    Article  MathSciNet  Google Scholar 

  34. Tilli, P.: A note on the spectral distribution of Toeplitz matrices. Linear Multilinear Algebra 45, 147–159 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tilli, P.: Locally Toeplitz sequences: spectral properties and applications. Linear Algebra Appl. 278, 91–120 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. van der Sluis, A., van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math. 48, 543–560 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Speleers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garoni, C., Manni, C., Pelosi, F. et al. On the spectrum of stiffness matrices arising from isogeometric analysis. Numer. Math. 127, 751–799 (2014). https://doi.org/10.1007/s00211-013-0600-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0600-2

Mathematics Subject Classification (2010)