Abstract
The analysis of adaptive finite element methods in practice immediately leads to eigenvalue clusters which requires the simultaneous marking in adaptive finite element methods. A first analysis for multiple eigenvalues of the recent work Dai et al. (arXiv Preprint 1210.1846v2, 2013) introduces an adaptive method whose marking strategy is based on the element-wise sum of local error estimator contributions for multiple eigenvalues. This paper proves the optimality of a practical adaptive algorithm based on a lowest-order conforming finite element method for eigenvalue clusters for the eigenvalues of the Laplace operator in terms of nonlinear approximation classes. All estimates are explicit in the initial mesh-size, the eigenvalues and the cluster width to clarify the dependence of the involved constants.














Similar content being viewed by others
References
Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of numerical analysis, vol. II, Handb. Numer. Anal., II, pp. 641–787. North-Holland, Amsterdam (1991)
Bank, R.E., Grubišić, L., Ovall, J.S.: A framework for robust eigenvalue and eigenvector error estimation and Ritz value convergence enhancement. Appl. Numer. Math. 66, 1–29 (2013)
Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)
Braess, D.: Finite elements, 3rd edn. Cambridge University Press, Cambridge (2008)
Carstensen, C., Gallistl, D., Schedensack, M.: Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems. Math. Comp. (2014). doi:10.1090/S0025-5718-2014-02894-9
Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118(3), 401–427 (2011)
Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)
Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comp. 83(290), 2605–2629 (2014)
Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50(6), 2803–2823 (2012)
Cascon, J., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)
Dai, X., He, L., Zhou, A.: Convergence rate and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues (2013, preprint). arXiv:1210.1846v2
Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110(3), 313–355 (2008)
Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)
Evans, L.C.: Partial differential equations, graduate studies in mathematics, vol. 19, 2nd edn. American Mathematical Society, providence (2010)
Garau, E.M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31(3), 914–946 (2011)
Garau, E.M., Morin, P., Zuppa, C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009)
Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)
Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009)
Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79(272), 2169–2189 (2010)
Knyazev, A.V., Osborn, J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)
Liu, X., Oishi, S.: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal. 51(3), 1634–1654 (2013)
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)
Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)
Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)
Strang, G., Fix, G.J.: An analysis of the finite element method. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1973)
Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Advances in numerical mathematics. Wiley, New York (1996)
Acknowledgments
The author would like to thank Professor C. Carstensen for valuable discussions. Furthermore, the author would like to thank the anonymous referees for their suggestions which helped to improve the presentation.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the DFG Research Center Matheon.