Skip to main content
Log in

An optimal adaptive finite element method for elastoplasticity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

An adaptive finite element algorithm for problems in elastoplasticity with hardening is proven to be of optimal convergence with respect to the notion of approximation classes. The results rely on the equivalence of the errors of the stresses and energies resulting from Jensen’s inequality. Numerical experiments study the influence of the hardening and bulk parameters to the convergence behavior of the AFEM algorithm. This is the first optimal adaptive FEM for a variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (2000)

  2. Alberty, J., Carstensen, C., Zarrabi, D.: Adaptive numerical analysis in primal elastoplasticity with hardening. Comput. Methods Appl. Mech. Eng. 171(3–4), 175–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuska, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2001)

    Google Scholar 

  4. Barthold, F.J., Schmidt, M., Stein, E.: Error indicators and mesh refinements for finite element computations of elastoplastic deformations. Comput. Mech. 22(3), 225–238 (1998)

    Article  MATH  Google Scholar 

  5. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Braess, D., Carstensen, C., Hoppe, R.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem. J. Numer. Math. 107(3), 455–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carstensen, C.: Numerical analysis of the primal problem of elastoplasticity with hardening. Numer. Math. 82(4), 577–597 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carstensen, C.: Convergence of an adaptive fem for a class of degenerate convex minimisation problems. IMA J. Numer. Anal. 28(3), 423–439 (2007)

    Article  MathSciNet  Google Scholar 

  9. Carstensen, C.: Convergence of adaptive finite element methods in computational mechanics. Appl. Numer. Math. 59(9), 2119–2130 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carstensen, C., Rabus, H.: An optimal adaptive mixed finite element method. Math. Comput. 80(274), 649–667 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen, C., Valdman, J., Brokate, M.: A quasi-static boundary value problem in multi-surface elastoplasticity: part 1—analysis. Math. Methods Appl. Sci. 27, 1697–1710 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carstensen, C., Valdman, J., Orlando, A.: A convergent adaptive finite element method for the primal problem of elastoplasticity. Int. J. Numer. Methods Eng. 67(13), 1851–1887 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cascon, J., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Christensen, P.W.: A nonsmooth newton method for elastoplastic problems. Comput. Methods Appl. Mech. Eng. 191(11–12), 1189–1219 (2002)

    Article  MATH  Google Scholar 

  15. Dörfler, W.: A convergent adaptive algorithm for poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Glowinski, R., Lions, J.L., Tremolieres, R.: Numerical analysis of variational inequalities. Transl. and rev. ed. Studies in Mathematics and its Applications, vol. 8. North-Holland Publishing Company, Amsterdam (1981)

  17. Gruber, P., Valdman, J.: Solution of one-time-step problems in elastoplasticity by a slant newton method. SIAM J. Sci. Comput. 31(2), 1558–1580 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Han, W.: Finite element analysis of a holonomic elastic-plastic problem. Numer. Math. 60(4), 493–508 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Han, W., Reddy, B.: Plasticity. Mathematical theory and numerical analysis. Interdisciplinary Applied Mathematics, vol. 9. Springer, Berlin (1999)

  20. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis, Text Editions. Springer, Grundlehren (2001)

    Book  Google Scholar 

  21. Hofinger, A., Valdman, J.: Numerical solution of the two-yield elastoplastic minimization problem. Computing 81(1), 35–52 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lang, S., Wieners, C., Wittum, G.: The application of adaptive parallel multigrid methods to problems in nonlinear solid mechanics. In: Stein, E. (ed.) Error-controlled Adaptive Finite Elements in Solid Mechanics, chap. 10, pp. 347–384. Wiley, New York (2002)

  23. Schröder, A., Wiedemann, S.: Error estimates in elastoplasticity using a mixed method. Appl. Numer. Math. 61, 1031–1045 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Simo, J., Hughes, T.: Computational inelasticity. Interdisciplinary Applied Mathematics, vol. 7. Springer, Berlin (1998)

  25. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Suquet, P.: Discontinuities and plasticity. Nonsmooth mechanics and applications, CISM Courses Lect. 302, 279–340 (1988)

  27. Temam, R.: Problèmes mathématiques en plasticité. Méthodes Mathématiques de l’Informatique, vol. 12. Publié avec le concours du C.N.R.S. Paris, Gauthier-Villars, Bordas (1983)

  28. Verfürth, R.: A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176(1–4), 419–440 (1999)

    Article  MATH  Google Scholar 

  29. Wieners, C.: Nonlinear solution methods for infinitesimal perfect plasticity. ZAMM Z. Angew. Math. Mech. 87(8–9), 643–660 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schröder.

Additional information

This work was supported by the DFG Research Center Matheon, Project C13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstensen, C., Schröder, A. & Wiedemann, S. An optimal adaptive finite element method for elastoplasticity. Numer. Math. 132, 131–154 (2016). https://doi.org/10.1007/s00211-015-0714-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0714-9

Mathematics Subject Classification