Skip to main content
Log in

On staggering techniques and the non-staggered Z-grid scheme

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A new staggered-grid momentum-based numerical scheme that is equivalent to the non-staggered Z-grid scheme for linearized shallow water equations is proposed. Utilizing the equivalence between the staggered/non-staggered discrete vorticity-divergence fields and the discrete velocity fields, the equivalent vorticity-divergence formulations of some of the existing staggered-grid schemes, namely the C-grid, D-grid, CD-grid, and co-volume schemes are derived. The strengths and weaknesses of these schemes are discussed from the perspectives of their new formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adcroft, A.J., Hill, C.N., Marshall, J.C.: A new treatment of the Coriolis terms in C-grid models at both high and low resolutions. Mon. Weather Rev. 127, 1928–1936 (1999)

    Article  Google Scholar 

  2. Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA General Circulation Model. Methods Comput. Phys. 17, 173–265 (1977)

    MathSciNet  Google Scholar 

  3. Arakawa, A., Lamb, V.R.: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Weather Rev. 109(1), 18–36 (1981)

    Article  Google Scholar 

  4. Bonaventura, L., Ringler, T.: Analysis of discrete shallow-water models on geodesic Delaunay grids with C-type staggering. Mon. Weather Rev. 133(8), 2351–2373 (2005)

    Article  Google Scholar 

  5. Bretherton, F.P.: Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92(393), 325–334 (1966)

    Article  Google Scholar 

  6. Chen, Q., Ringler, T., Gunzburger, M.: A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids. J. Comput. Phys. 240(C), 174–197 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. Siam Rev. 41(4), 637–676 (1999). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24(5), 1488–1506 (2003). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  10. Heikes, R., Randall, D.A.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: basic design and results of tests. Mon. Weather Rev. 123(6), 1862–1880 (1995a)

    Article  Google Scholar 

  11. Heikes, R., Randall, D.A.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II. A detailed description of the grid and an analysis of numerical accuracy. Mon. Weather Rev. 123(6), 1881–1887 (1995b)

    Article  Google Scholar 

  12. Hoskins, B., McIntyre, M., Robertson, A.: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111(470), 877–946 (1985)

    Article  Google Scholar 

  13. Janjić, Z.I., Mesinger, F.: Response to smallscale forcing on two staggered grids used in finitedifference models of the atmosphere. Q. J. R. Meteorol. Soc. 115(489), 1167–1176 (1989)

    Article  Google Scholar 

  14. Marshall, J., Olbers, D., Ross, H.: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. 23(3), 465–487 (1993)

  15. Perot, B.: Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159(1), 58–89 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Randall, D.: Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Weather Rev. 122(6), 1371–1377 (1994)

    Article  Google Scholar 

  17. Ringler, T.D., Randall, D.A.: The ZM grid: an alternative to the Z grid. Mon. Weather Rev. 130(5), 1411–1422 (2002)

    Article  Google Scholar 

  18. Ringler, T.D., Thuburn, J., Klemp, J.B., Skamarock, W.C.: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys. 229(9), 3065–3090 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sadourny, R.: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci. 32(4), 680–689 (1975)

    Article  Google Scholar 

  20. Skamarock, W.C.: A linear analysis of the NCAR CCSM finite-volume dynamical core. Mon. Weather Rev. 136(6), 2112–2119 (2008)

    Article  Google Scholar 

  21. Staniforth, A., Thuburn, J.: Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc. 138(662), 1–26 (2012)

    Article  Google Scholar 

  22. Stuhne, G.R., Peltier, W.R.: A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: a new numerical structure for ocean general circulation modeling. J. Comput. Phys. 213(2), 704–729 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Thuburn, J.: Some basic dynamics relevant to the design of atmospheric model dynamical cores. Numerical Techniques for Global Atmospheric Models, pp. 3–27. Springer, Berlin (2011)

    Chapter  Google Scholar 

  24. Thuburn, J., Ringler, T., Skamarock, W., Klemp, J.: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys. 228(22), 8321–8335 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Winninghoff. F.J.: On the adjustment toward a geostrophic balance in a simple primitive equation model with application to the problems of initialization and objective analysis. Ph.D. thesis, Thesis (PH.D.), University of California, Los Angeles (1968)

Download references

Acknowledgments

The author acknowledges the support of the Simons Foundation through the Collaboration Grants for Mathematicians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q. On staggering techniques and the non-staggered Z-grid scheme. Numer. Math. 132, 1–21 (2016). https://doi.org/10.1007/s00211-015-0715-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0715-8

Mathematics Subject Classification

Navigation