Skip to main content
Log in

Analysis of a mesh-dependent stabilization for the three fields domain decomposition method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a stabilized version of the three fields domain decomposition method in the finite element framework, by a variant of the stabilization proposed in [2]. Under fairly general conditions on the meshes and on the finite element discretization considered we prove that for both the two dimensional and the three dimensional case the stabilized method retains the optimality/sub-optimality properties allowed by the interpolation in the underlying discretization spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baiocchi, C., Brezzi, F.: Stabilization of unstable methods. In: Ricci, P.E. (ed.) Problemi attuali dell’Analisi e della Fisica Matematica. Università “La Sapienza”, Roma (1993)

  2. Baiocchi, C., Brezzi, F., Marini, D.: Stabilization of Galerkin methods and application to domain decomposition. In: Future Tendencies in Computer Science, Control and Applied Mathematics (1992)

  3. Ben Belgacem, F., Maday, Y.: The mortar element method for three dimensional finite elements. RAIRO M2AN 31, 289–302 (1997)

  4. Bertoluzza, S.: Analysis of a stabilized three-fields domain decomposition method. Numer. Math. 93(4), 611–634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertoluzza, S.: Substructuring preconditioners for the three fields domain decomposition method. Math. Comput. 73(246), 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoluzza, S., Brezzi, F., Sangalli, G.: The method of mothers for non-overlapping, non-matching DDM. Numer. Math. 107(3), 397–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertoluzza, S., Falletta, S.: Analysis of some injection bounds for Sobolev spaces by wavelet decomposition. Comptes Rendus Mathmatique 349(7–8), 421–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertoluzza, S., Falletta, S., Manzini, G.: Efficient design of residual-based stabilization techniques for the three fields domain decomposition method. Math. Models Methods Appl. Sci. 18(7), 973–999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertoluzza,S., Kunoth, A.: Wavelet stabilization and preconditioning for domain decomposition. I.M.A. Jour. Numer. Anal. 20, 533–559 (2000)

  10. Bertoluzza, S., Perrier, V.: The mortar method in the wavelet context. ESAIM:M2AN 35, 647–673 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the \({L}_2\)-projection in \({H}^1(\omega )\). Math. Comput. 71(273), 147–156 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer Science + Business Media, New York (2008)

    Book  MATH  Google Scholar 

  13. Brezzi, F., Franca, L., Marini, D., Russo, A.: Stabilization techniques for domain decomposition methods with non-matching grids. In: Proceedings of IX Domain Decomposition Methods Conference

  14. Brezzi, F., Marini, D.: A three-field domain decomposition method. In: Quarteroni, A., Periaux, J., Kuznetsov, Y.A., Widlund, O.B. (eds.) Domain Decomposition Methods in Science and Engineering, vol. 157, American Mathematical Society, Contemporary Mathematics, pp. 27–34 (1994)

  15. Buffa, A.: Error estimate for a stabilised domain decomposition method with nonmatching grids. Numer. Math. 90(4), 617–640 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carstensen, C.: Merging the Bramble–Pascik–Steinbach and the Crouzeix-thomée criterion for H1-stability of the L2-projection onto finite element function spaces. Math. Comput. 71(237), 157–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Crouzeix, M., Thomée, V.: The stability in \({L}_p\) and \({W}^1_p\) of the \({L}_2\)-projection onto finite element function spaces. Math. Comput. 48(178), 521–532 (1987)

    MATH  Google Scholar 

  19. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159, Applied Mathematical Science. Springer, New York (2004)

  20. Faermann, B.: Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods: Part II. the three-dimensional case. Numer. Math. 92(3), 467–499 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nitsche, J.A.: Ein kriterium für die quasi-optimalität des ritzschen verfahren. Numer. Math. 11, 346–348 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rapin, G., Lube, G.: A stabilized three field formulation for advection diffusion. Computing 73, 155–178 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Steinbach, O.: On the stability of the \({L}_2\) projection in fractional Sobolev spaces. 88, 367–379 (2000)

Download references

Acknowledgments

I would like to thank the anonymous reviewers for their helpful comments and suggestions, and, in particular, for prompting me to include the case of the mortar multiplier. Work partially supported by Project MIUR-PRIN 2012 (2012HBLYE4) “Innovative methodologies for PDE based numerical modeling”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bertoluzza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoluzza, S. Analysis of a mesh-dependent stabilization for the three fields domain decomposition method. Numer. Math. 133, 1–36 (2016). https://doi.org/10.1007/s00211-015-0742-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0742-5

Mathematics Subject Classification

Navigation