Skip to main content
Log in

Long-term analysis of the Störmer–Verlet method for Hamiltonian systems with a solution-dependent high frequency

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The long-time behaviour of the Störmer–Verlet–leapfrog method is studied when this method is applied to highly oscillatory Hamiltonian systems with a slowly varying, solution-dependent high frequency. Using the technique of modulated Fourier expansions with state-dependent frequencies, which is newly developed here, the following results are proved: the considered Hamiltonian systems have the action as an adiabatic invariant over long times that cover arbitrary negative powers of the small parameter. The Störmer–Verlet method approximately conserves a modified action and a modified total energy over a long time interval that covers a negative integer power of the small parameter. This power depends on the size of the product of the stepsize with the high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1997)

    MATH  Google Scholar 

  2. Bornemann, F.: Homogenization in Time of Singularly Perturbed Mechanical Systems. Springer LNM, no. 1687, Springer, London (1998)

  3. Cohen, D., Gauckler, L., Hairer, E., Lubich, C.: Long-term analysis of numerical integrators for oscillatory Hamiltonian systems under minimal non-resonance conditions. BIT 55 (2015). doi:10.1007/s10543-014-0527-8

  4. Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45, 287–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cotter, C.J., Reich, S.: Adiabatic invariance and applications: From molecular dynamics to numerical weather prediction. BIT Numer. Math. 44(3), 439–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faou, E., Gauckler, L., Lubich, C.: Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2, e5 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gauckler, L., Lubich, C.: Splitting integrators for nonlinear Schrödinger equations over long times. Found. Comput. Math. 10, 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hairer, E., Lubich, C.: Energy conservation by Störmer-type numerical integrators. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1999 (Dundee). Chapman & Hall/CRC Research Notes in Mathematics, vol.420, pp 169–189. Chapman & Hall/CRC, Boca Raton, FL (2000)

  10. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, E., Lubich, C.: Modulated, Expansions for Continuous and Discrete Oscillatory Systems, Foundations of Computational Mathematics, Budapest 2011, LMS Lecture Notes Series, pp. 113–128. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  12. Hairer, E., Lubich, C.: Long-term control of oscillations in differential equations. Int. Math. Nachr. 223, 1–17 (2013)

    MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numer. 12, 399–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Henrard, J.: The adiabatic invariant in classical mechanics. In: Dynamics Reported, Expositions Dynamical Systems (N.S.), vol. 2, pp.117–235, Springer, Berlin (1993)

  16. McLachlan, R.I., Stern, A.: Modified trigonometric integrators. SIAM J. Numer. Anal. 52, 1378–1397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Reich, S.: Preservation of adiabatic invariants under symplectic discretization. Appl. Numer. Math. 29, 45–55 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reich, S.: Smoothed Langevin dynamics of highly oscillatory systems. Phys. D: Nonlinear Phenomena 138(3), 210–224 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rubin, H., Ungar, P.: Motion under a strong constraining force. Commun. Pure Appl. Math. 10(1), 65–87 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sigg, M.: Hochoszillatorische Differentialgleichungen mit zeitabhängigen Frequenzen. Master’s thesis, University of Basel (2009)

  21. Stern, A., Grinspun, E.: Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model. Simul. 7, 1779–1794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, M., Skeel, R.D.: Cheap implicit symplectic integrators. Appl. Numer. Math. 25, 297–302 (1997) [special issue on time integration (Amsterdam, 1996)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lubich.

Additional information

This work has been supported by the Fonds National Suisse, Project No. 200020-144313/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hairer, E., Lubich, C. Long-term analysis of the Störmer–Verlet method for Hamiltonian systems with a solution-dependent high frequency. Numer. Math. 134, 119–138 (2016). https://doi.org/10.1007/s00211-015-0766-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0766-x

Mathematics Subject Classification

Navigation