Abstract
A rich theory demonstrating convergence and optimality of adaptive finite element methods (AFEM) has been developed in recent years. In this work we prove optimality of AFEM which are designed to control local energy errors in elliptic partial differential equations. Because errors propagate globally in FEM, controlling local errors requires controlling both local energy solution properties and global error contributions (pollution errors) which may be measured in a weaker norm such as the \(L_2\) norm. We define adaptive methods which control both of these error components and prove that they converge with the best possible rate over all possible refinements of the initial mesh. These results are valid for Poisson’s problem on convex polyhedral domains in arbitrary space dimension. Our theory establishes AFEM optimality for several adaptive marking strategies which rigorously control pollution effects. We also present numerical examples that illustrate our theory and confirm that local energy AFEM without pollution control can fail to yield optimal meshes.







Similar content being viewed by others
References
Babuška, I., Osborn, J.: Analysis of finite element methods for second order boundary value problems using mesh dependent norms. Numer. Math. 34, 41–62 (1980)
Bank, R.E., Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput. 22, 411–1443 (2000)
Bank, R.E.. Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 45, 291–323 (2003). [Reprinted from SIAM J. Sci. Comput. 22(4), 1411–1443 (2000). (MR1797889)]
Bank, R.E., Ovall, J.S.: Dual functions for a parallel adaptive method. SIAM J. Sci. Comput. 29, 1511–1524 (2007)
Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)
Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002). (Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)
Cascon, J., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)
Dauge, M.: Elliptic boundary value problems on corner domains. In: Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)
Demlow, A.: Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems. Math. Comput. 76, 19–42 (2007)
Demlow, A.: Convergence of an adaptive finite element method for controlling local energy errors. SIAM J. Numer. Anal. 48, 470–497 (2010)
Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80, 1–9 (2011)
Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \({W}_\infty ^1\) norm on graded meshes. Math. Comput. 81, 743–764 (2012)
Demlow, A., Stevenson, R.: Convergence and quasi-optimality of an adaptive finite element method for controlling \(L_2\) errors. Numer. Math. 117, 185–218 (2011)
Diening, L., Kreuzer, C., Stevenson, R.: Instance optimality of the adaptive maximum strategy. Found. Comput. Math. (2015). doi:10.1007/s10208-014-9236-6
Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)
Eriksson, K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4, 313–329 (1994)
Estep, D., Holst, M., Larson, M.: Generalized Green’s functions and the effective domain of influence. SIAM J. Sci. Comput. 26, 1314–1339 (2005)
He, Y., Xu, J., Zhou, A., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)
Holst, M.: Application of domain decomposition and partition of unity methods in physics and geometry. In: Domain Decomposition Methods in Science and Engineering, pp. 63–78. Natl. Auton. Univ. Mex., México (2003)
Liao, X., Nochetto, R.H.: Local a posteriori error estimates and adaptive control of pollution effects. Numer. Methods Partial Differ. Equ. 19, 421–442 (2003)
Maz’ya, V.G., Rossmann, J.: Elliptic equations in polyhedral domains. In: Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence (2010)
Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)
Mommer, M.S., Stevenson, R.: A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal. 47, 861–886 (2009)
Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002). [Revised reprint of Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000); MR1770058 (2001g:65157)]
Morin, P., Siebert, K.G., Veeser, A.: A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18, 707–737 (2008)
Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)
Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz–Galerkin methods. Math. Comput. 28, 937–958 (1974)
Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates. Math. Comput. 57, 73–108 (1991). (S1–S11)
Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. In: Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005). [The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux)]
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)
Stevenson, R.: An optimal adaptive finite element method. SIAM J. Numer. Anal. 42, 2188–2217 (2005)
Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)
Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)
Wihler, T.P.: Weighted \(L^2\) -norm a posteriori error estimation of FEM in polygons. Int. J. Numer. Anal. Model. 4, 100–115 (2007)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)
Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the National Science Foundation under Grant DMS-1016094.
Rights and permissions
About this article
Cite this article
Demlow, A. Quasi-optimality of adaptive finite element methods for controlling local energy errors. Numer. Math. 134, 27–60 (2016). https://doi.org/10.1007/s00211-015-0774-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0774-x