Abstract
A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel third-order Adams–Moulton scheme is used for the discretization of the dissipative term whereas a third-order explicit Adams–Bashforth scheme is used for the time discretization of the interface term that couples the Stokes and Darcy components. The scheme is efficient in the sense that one needs to solve, at each time step, decoupled Stokes and Darcy problems. Therefore, legacy Stokes and Darcy solvers can be applied in parallel. The scheme is also unconditionally stable and, with a mild time-step restriction, long-time accurate in the sense that the error is bounded uniformly in time. Numerical experiments are used to illustrate the theoretical results. To the authors’ knowledge, the novel algorithm is the first third-order accurate numerical scheme for the Stokes–Darcy system possessing its favorable efficiency, stability, and accuracy properties.






Similar content being viewed by others
References
Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67, 457–477 (1998)
Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)
Akrivis, G., Smyrlis, Y.: Implicit–explicit BDF methods for the Kuramoto–Sivashinsky equation. Appl. Numer. Math. 51, 151–169 (2004)
Anitescu, M., Pahlevani, F., Layton, W.: Implicit for local effects and explicit for nonlocal effects is unconditionally stable. Electron. Trans. Numer. Anal. 18, 174–187 (2004)
Ascher, U., Ruuth, S., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)
Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes–Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35(1), B82–B106 (2013)
Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8, 1–25 (2010)
Cao, Y., Gunzburger, M., Hu, B., Hua, F., Wang, X., Zhao, W.: Finite element approximation of the Stokes–Darcy flow with Beavers–Joseph interface boundary condition. SIAM J. Numer. Anal. 47, 4239–4256 (2010)
Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin Domain decomposition method for Stokes-Darcy model with Beaver–Joseph interface condition. Numer. Math. 117, 601–629 (2011)
Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83, 1617–1644 (2014)
Cesmelioglu, A., Girault, V., Riviere, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. doi:10.1051/m2an/2012034
Chen, W., Chen, P., Gunzburger, M., Yan, N.: Superconvergence analysis of FEMs for the Stokes–Darcy system. Math. Methods Appl. Sci. 33, 1605–1617 (2010)
Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)
Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second order methods for Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013)
Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)
Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi, F., et al. (eds.) Numerical Mathematics and Advanced Applications-ENUMATH 2001, pp. 3–20. Springer, Milan (2003)
Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)
Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009)
Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes–Darcy system by optimization. J. Sci. Comput. 59(3), 775–794 (2014)
Feng, W., He, X., Wang, Z., Zhang, X.: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with Beavers–Joseph interface condition. Appl. Math. Comput. 219(2), 453–463 (2012)
Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)
Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)
Jones, I.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238 (1973)
Kincaid, T.: Exploring the Secrets of Wakulla Springs. Open Seminar, Tallahassee (2004)
Kubacki, M.: Uncoupling evolutionary groundwater-surface water flows using the Crank–Nicolson leapfrog method. Numer. Methods Partial Differ. Equ. 29(4), 1192–1216 (2013)
Kuniansky, E.: U.S. Geological Survey Karst Interest Group Proceedings, U.S. Geological Survey Scientific Investigations Report, Bowling Green, pp. 2008–5023 (2008)
Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)
Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)
Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes–Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236, 3198–3217 (2012)
Layton, W.J., Trenchea, C.: Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations. Appl. Numer. Math. 62, 112–120 (2012)
Lee, H., Rife, K.: Least squares approach for the time-dependent nonlinear Stokes–Darcy flow. Math. Method Appl. Sci. 67(10), 1806–1815 (2014)
Márquez, A., Meddahi, S., Sayas, F.J.: A decoupled preconditioning technique for a mixed Stokes–Darcy model. J. Sci. Comput. 57(1), 174–192 (2013)
Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)
Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79, 707–731 (2010)
Saffman, P.: On the boundary condition at the interface of a porous medium. Studies Appl. Math. 1, 77–84 (1971)
Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Equ. 29(2), 549–583 (2013)
Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51(2), 813–839 (2013)
Si, Z., Wang, Y., Li, S.: Decoupled modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem. Math. Methods Appl. Sci. 37(9), 1392–1404 (2014)
Zuo, L., Hou, Y.: A decoupling two-grid algorithm for the mixed Stokes–Darcy model with the Beavers–Joseph interface condition. Numer. Methods Partial Differ. Equ. 30(3), 1066–1082 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is support in part by a grant from the NSF.
Rights and permissions
About this article
Cite this article
Chen, W., Gunzburger, M., Sun, D. et al. An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 134, 857–879 (2016). https://doi.org/10.1007/s00211-015-0789-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0789-3