Abstract
We consider the mass matrix arising from Bernstein polynomials as finite element shape functions. In particular, we give an explicit formula for its eigenvalues and exact characterization of the eigenspaces in terms of the Bernstein representation of orthogonal polynomials. We then derive a fast algorithm for solving linear systems involving the element mass matrix. After establishing these results, we describe the application of Bernstein techniques to the discontinuous Galerkin finite element method for hyperbolic conservation laws, obtaining optimal complexity algorithms. Finally, we present numerical results investigating the accuracy of the mass inversion algorithms and the scaling of total run-time for the function evaluation needed in DG time-stepping.





Similar content being viewed by others
References
Ainsworth, M., Andriamaro, G., Davydov, O.: Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures. SIAM J. Sci. Comp. 33(6), 3087–3109 (2011)
Ainsworth, M., Andriamaro, G., Davydov, O.: A Bernstein-Bézier basis for arbitrary order Raviart-Thomas finite elements. Construct. Approx. 41(1), 1–22 (2015)
Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comp. Methods Appl. Mechan. Eng. 198(21), 1660–1672 (2009)
Bareiss, E.H.: Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices. Numerische Mathematik 13(5), 404–424 (1969)
Behnel, S., Bradshaw, R., Ewing, G.: Cython: C-extensions for Python (2008)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, third edn. Springer, New York (2008)
Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991)
Derriennic, M.M.: On multivariate approximation by Bernstein-type polynomials. J. Approx. Theory 45(2), 155–166 (1985)
Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comp. 6(4), 345–390 (1991)
Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Num. Anal. 19(6), 1260–1262 (1982)
Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)
Farouki, R.T., Goodman, T.N.T., Sauer, T.: Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains. Comp. Aided Geom. Design 20(4), 209–230 (2003)
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)
Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids: I. time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)
Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, vol. 54. Springer (2007)
Hoteit, H., Ackerer, P., Mosé, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int. J. Num. Methods Eng. 61(14), 2566–2593 (2004)
Jones, E., Oliphant, T., Peterson, P.: SciPy: Open source scientific tools for Python. http://www.scipy.org/ (2001)
Karniadakis, G.E., Sherwin, S.J.: Spectral/\(hp\) element methods for computational fluid dynamics, 2nd edn. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)
Kirby, R.C.: Fast simplicial finite element algorithms using Bernstein polynomials. Numerische Mathematik 117(4), 631–652 (2011)
Kirby, R.C.: Low-complexity finite element algorithms for the de Rham complex on simplices. SIAM J. Sci. Comp. 36(2), A846–A868 (2014)
Kirby, R.C., Kieu, T.T.: Fast simplicial quadrature-based finite element operators using Bernstein polynomials. Numerische Mathematik 121(2), 261–279 (2012)
Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009)
Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29(3), 731–751 (2007)
Lai, M.J., Schumaker, L.L.: Spline functions on triangulations, encyclopedia of mathematics and its applications, vol. 110. Cambridge University Press, Cambridge (2007)
Levinson, N.: The Wiener RMS error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)
Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2): 20–28 (2010). doi:10.1145/1731022.1731030
Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comp. 9(6), 1073–1084 (1988)
Strang, G.: Linear Algebra and Its Applications. Thomson, Brooks/Cole, Belmont (2006)
Stroud, A.H.: Approximate calculation of multiple integrals. Prentice-Hall Inc., Englewood Cliffs, N.J. Prentice-Hall Series in Automatic Computation (1971)
Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, vol. 16. Springer (1999)
Warburton, T.: private communication
Warburton, T.: A low-storage curvilinear discontinuous Galerkin method for wave problems. SIAM J. Sci. Comp. 35(4), A1987–A2012 (2013)
Zhu, J., Qiu, J., Shu, C.W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. J. Comput. Phys. 227(9), 4330–4353 (2008)
Zhu, J., Zhong, X., Shu, C.W., Qiu, J.: Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
The author acknowledges support from NSF grant CCF-1325480.
Rights and permissions
About this article
Cite this article
Kirby, R.C. Fast inversion of the simplicial Bernstein mass matrix. Numer. Math. 135, 73–95 (2017). https://doi.org/10.1007/s00211-016-0795-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0795-0