Skip to main content
Log in

Highly accurate doubling algorithms for M-matrix algebraic Riccati equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The doubling algorithms are very efficient iterative methods for computing the unique minimal nonnegative solution to an M-matrix algebraic Riccati equation (MARE). They are globally and quadratically convergent, except for MARE in the critical case where convergence is linear with the linear rate 1 / 2. However, the initialization phase and the doubling iteration kernel of any doubling algorithm involve inverting nonsingular M-matrices. In particular, for MARE in the critical case, the M-matrices in the doubling iteration kernel, although nonsingular, move towards singular M-matrices at convergence. These inversions are causes of concerns on entrywise relative accuracy of the eventually computed minimal nonnegative solution. Fortunately, a nonsingular M-matrix can be inverted by the GTH-like algorithm of Alfa et al. (Math Comp 71:217–236, 2002) to almost full entrywise relative accuracy, provided a triplet representation of the matrix is known. Recently, Nguyen and Poloni (Numer Math 130(4):763–792, 2015) discovered a way to construct triplet representations in a cancellation-free manner for all involved M-matrices in the doubling iteration kernel, for a special class of MAREs arising from Markov-modulated fluid queues. In this paper, we extend Nguyen’s and Poloni’s work to all MAREs by also devising a way to construct the triplet representations cancellation-free. Our construction, however, is not a straightforward extension of theirs. It is made possible by an introduction of novel recursively computable auxiliary nonnegative vectors. As the second contribution, we propose an entrywise relative residual for an approximate solution. The residual has an appealing feature of being able to reveal the entrywise relative accuracies of all entries, large and small, of the approximation. This is in marked contrast to the usual legacy normalized residual which reflects relative accuracies of large entries well but not so much those of very tiny entries. Numerical examples are presented to demonstrate and confirm our claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Previously in [24], \(E_0\) and \(F_0\) are nonpositive, but that is due to their assignments there and can be rectified through reassigning each of them to their corresponding opposites as we will do later in this paper for uniformity.

  2. \(E_0\) and \(F_0\) are opposite in sign to the ones in [24] to make them entrywise nonnegative.

  3. Two matrices X and Y are said to have the same entrywise nonzero pattern if \(X_{(i,j)}=0\,\,\Leftrightarrow \,\,Y_{(i,j)}=0\).

References

  1. Alfa, A.S., Xue, J., Ye, Q.: Accurate computation of the smallest eigenvalue of a diagonally dominant \(M\)-matrix. Math. Comp. 71, 217–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfa, A.S., Xue, J., Ye, Q.: Entrywise perturbation theory for diagonally dominant \({M}\)-matrices with applications. Numer. Math. 90(3), 401–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. American National Standards Institute and Institute of Electrical and Electronic Engineers: IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard, Std 754–1985, New York (1985)

  4. Bailey, D.H., Hida, Y., Li, X.S., Thompson, B.: ARPREC: an arbitrary precision computation package. Tech. rep., Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (2002). Available at http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/arprec.pdf

  5. Bean, N.G., O’Reilly, M.M., Taylor, P.G.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Models 21, 149–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bini, D.A., Meini, B., Poloni, F.: Transforming algebraic Riccati equations into unilateral quadratic matrix equations. Numer. Math. 116, 553–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiang, C.Y., Chu, E.K.W., Guo, C.H., Huang, T.M., Lin, W.W., Xu, S.F.: Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl. 31(2), 227–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia, PA (1997)

    Book  MATH  Google Scholar 

  9. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–47 (1991)

    Article  Google Scholar 

  10. Guan, J., Lu, L., Li, R.-C., Shao, R.: Self-corrective algorithms for generalized diagonally dominant matrices. J. Comput. Appl. Math. 302, 285–300 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, C., Higham, N.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, C.H.: Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization for \(M\)-matrices. SIAM J. Matrix Anal. Appl. 23, 225–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, C.H., Iannazzo, B., Meini, B.: On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(4), 1083–1100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, C.H., Laub, A.J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22, 376–391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, X., Lin, W., Xu, S.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103, 393–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, T.M., Huang, W.Q., Li, R.-C., Lin, W.W.: A new two-phase structure-preserving doubling algorithm for critically singular \(m\)-matrix algebraic riccati equations. Numer. Linear Algebra Appl. (2015). To appear

  17. Juang, J.: Existence of algebraic matrix Riccati equations arising in transport theory. Linear Algebra Appl. 230, 89–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Juang, J., Lin, W.W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20(1), 228–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  20. Nguyen, G.T., Poloni, F.: Componentwise accurate fluid queue computations using doubling algorithms. Numer. Math. 130(4), 763–792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Poloni, F., Reis, T.: The SDA Method for Numerical Solution of Lur’e Equations. arXiv:1101.1231 (2011)

  22. Rogers, L.: Fluid models in queueing theory and Wiener–Hopf factorization of Markov chains. Ann. Appl. Probab. 4, 390–413 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  24. Wang, W.G., Wang, W.C., Li, R.-C.: Alternating-directional doubling algorithm for \(M\)-matrix algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 33(1), 170–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W.G., Wang, W.C., Li, R.-C.: Deflating irreducible singular \(M\)-matrix algebraic Riccati equations. Numer. Algebra Control Optim. 3, 491–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of \({M}\)-matrix algebraic Riccati equations. Numer. Math. 120(4), 671–700 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of \({M}\)-matrix Sylvester equations. Numer. Math. 120(4), 639–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to both reviewers for their constructive comments/suggestions that improve the presentation considerably. Xue is supported in part by NSFC Grant 11371105 and Laboratory of Mathematics for Nonlinear Science, Fudan University. Li is supported in part by NSF Grants DMS-1317330 and CCF-1527104, and NSFC Grant 11428104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Appendix: Sparsity of \(E_k,F_k,X_k,Y_k\)

Appendix: Sparsity of \(E_k,F_k,X_k,Y_k\)

For convenience, we introduce a partial ordering on nonnegative matrices with respect to their entrywise nonzero patterns. For matrices \(P\ge 0\), \(Q\ge 0\) of the same size, we say that Q majorizes P in the entrywise nonzero pattern, written as \(P \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q\), if \(Q_{(i,j)}=0\) implies \(P_{(i,j)}=0\), and write \(P\,{\mathop {=}\limits ^{\scriptstyle 0}}\,Q\) if \(P \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q\) and \(Q \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,P\). Evidently, \(0\le P\le Q\) implies \(P \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q\), but not the other way around.

Lemma A.1

  1. 1.

    Given \(0\le P_i\le Q_i\) for \(i=1,2\), all of the same size, we have

    $$\begin{aligned} P_1+P_2\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q_1+Q_2, \quad P_1P_2\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q_1Q_2. \end{aligned}$$
  2. 2.

    Given \(0\le P\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q\), we have \(P+Q\,{\mathop {=}\limits ^{\scriptstyle 0}}\,Q\).

Lemma A.2

Let PQ be nonsingular M-matrices, and split P and Q as

$$\begin{aligned} P&=D_P-N_P, \quad D_P={{\mathrm{diag}}}(P), \end{aligned}$$
(A.1a)
$$\begin{aligned} Q&=D_Q-N_Q, \quad D_Q={{\mathrm{diag}}}(Q). \end{aligned}$$
(A.1b)

If \(N_P\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,N_Q\), then \(P^{-1}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q^{-1}\). In particular, if \(N_P\,{\mathop {=}\limits ^{\scriptstyle 0}}\,N_Q\), then \(P^{-1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,Q^{-1}\).

Proof

Since PQ are nonsingular M-matrices, \(P^{-1}\) and \(Q^{-1}\) admit the following series respresentations

$$\begin{aligned} P^{-1}=D_P^{-1}\sum _{k=0}^{\infty } \left( N_PD_P^{-1}\right) ^k,\quad Q^{-1}=D_Q^{-1}\sum _{k=0}^{\infty } \left( N_QD_Q^{-1}\right) ^k. \end{aligned}$$
(A.2)

If \(N_P\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,N_Q\), then \((N_PD_P^{-1})^k\,{\mathop {=}\limits ^{\scriptstyle 0}}\,N_P^k \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,N_Q^k \,{\mathop {=}\limits ^{\scriptstyle 0}}\,(N_QD_Q^{-1})^k\) for all \(k\ge 0\) and thus \(P^{-1}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Q^{-1}\). In the case when \(N_P\,{\mathop {=}\limits ^{\scriptstyle 0}}\,N_Q\), we also have \(N_Q\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,N_P\) and thus \(Q^{-1}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,P^{-1}\) at the same time. \(\square \)

Lemma A.3

For a nonsingular M-matrix P, \(P^{-1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-k}\) for \(k\ge 1\), and \((\alpha I-P^{-1})^{-1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}\) for \(\alpha >\rho (P^{-1})\).

Proof

In this proof and that of Lemma A.4 later, the series \(\sum _{i=0}^{\infty } N_P^i\) is used only symbolically for its entrywise nonzero pattern since the series itself may not even converge. Again we have (A.2) which yields that \(P^{-1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,\sum _{i=0}^{\infty } N_P^i\), and that

$$\begin{aligned} P^{-k}=(P^{-1})^k \,{\mathop {=}\limits ^{\scriptstyle 0}}\,\left( \sum _{i=0}^{\infty } N_P^i\right) ^k \,{\mathop {=}\limits ^{\scriptstyle 0}}\,\sum _{i=0}^{\infty } N_P^i \,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}. \end{aligned}$$

For \(\alpha >\rho (P^{-1})\), we have \( (\alpha I-P^{-1})^{-1} =\alpha ^{-1}\sum _{i=0}^{\infty }(\alpha P)^{-i} \,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}, \) as expected. \(\square \)

Lemma A.4

Let P be a nonsingular M-matrix and \(Q\ge 0\), and split PQ as

$$\begin{aligned} P&=D_P-N_P, \quad D_P={{\mathrm{diag}}}(P), \end{aligned}$$
(A.3a)
$$\begin{aligned} Q&=D_Q+\widetilde{N}_Q, \quad D_Q={{\mathrm{diag}}}(Q). \end{aligned}$$
(A.3b)

If all of the diagonal entries of \(D_Q\) are positive and \(\widetilde{N}_Q\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,N_P\), then

$$\begin{aligned} P^{-1}Q\,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}. \end{aligned}$$

Proof

Since \(P^{-1}\ge 0\) and \(Q\ge 0\), \(P^{-1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}D_Q\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,P^{-1}D_Q+P^{-1}\widetilde{N}_Q=P^{-1}Q\). On the other hand,

$$\begin{aligned} P^{-1}Q\,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}+P^{-1}\widetilde{N}_Q\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,P^{-1}+P^{-1}N_P \,{\mathop {=}\limits ^{\scriptstyle 0}}\,\sum _{i=0}^{\infty } N_P^i \,{\mathop {=}\limits ^{\scriptstyle 0}}\,P^{-1}, \end{aligned}$$

as was to be shown. \(\square \)

Theorem A.1

Let \(E_0,F_0,X_0,Y_0\) be as in (3.6b), and let \(E_k,F_k,X_k,Y_k\) be produced by the doubling iteration (3.1). Then for \(k\ge 0\),

$$\begin{aligned} \begin{bmatrix} E_{k+1}&\quad Y_{k+1}\\ X_{k+1}&\quad F_{k+1} \end{bmatrix} \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,\begin{bmatrix} E_k&\quad Y_k \\ X_k&\quad F_k \end{bmatrix}, \end{aligned}$$
(A.4)

\(X_{k+1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,X_k\,{\mathop {=}\limits ^{\scriptstyle 0}}\,\Phi \), and \(Y_{k+1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,Y_k\,{\mathop {=}\limits ^{\scriptstyle 0}}\,\Psi \).

Proof

It is clear that \(X_k\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,X_{k+1}\) and \(Y_k\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,Y_{k+1}\) because of (3.1c) and (3.1d). So if (A.4) is proven true, then we will immediately have \(X_{k+1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,X_k\,{\mathop {=}\limits ^{\scriptstyle 0}}\,\Phi \) and \(Y_{k+1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,Y_k\,{\mathop {=}\limits ^{\scriptstyle 0}}\,\Psi \).

It remains to prove (A.4). Because of (3.6), it suffices to prove (A.4) with a hat over every symbol. Set \( Q=\begin{bmatrix} N_B&D\\ C&N_A \end{bmatrix}. \) We have

$$\begin{aligned} \begin{bmatrix} B+{\hat{\alpha }} I_m&\quad -D\\ -C&\quad A+{\hat{\beta }} I_n \end{bmatrix}&=\begin{bmatrix} D_B+{\hat{\alpha }} I_m&\quad 0 \\ 0&\quad D_A+{\hat{\beta }} I_n \end{bmatrix} -Q, \\ \begin{bmatrix} {\hat{\beta }} I_m-B&\quad D\\ C&\quad {\hat{\alpha }} I_n-A \end{bmatrix}&=\begin{bmatrix} {\hat{\beta }} I_m-D_B&\quad 0 \\ 0&\quad {\hat{\alpha }} I_n-D_A \end{bmatrix}+Q. \end{aligned}$$

Noting (3.5) and using Lemmas A.2 and A.4, we see

$$\begin{aligned} \begin{bmatrix} \widehat{E}_0&\quad Y_0\\ X_0&\quad \widehat{F}_0 \end{bmatrix}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,(\gamma _1 I-Q)^{-1} \end{aligned}$$

for \(\gamma _1>\rho (Q)\). By Lemmas A.2 and A.3,

$$\begin{aligned} \begin{bmatrix} I_m&\quad -Y_0\\ -X_0&\quad I_n \end{bmatrix}^{-1} \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,\left( \begin{bmatrix}\gamma _2 I_m&\quad 0 \\ 0&\quad \gamma _2 I_n \end{bmatrix}-\begin{bmatrix} \widehat{E}_0&\quad Y_0\\ X_0&\quad \widehat{F}_0 \end{bmatrix} \right) ^{-1}\,{\mathop {=}\limits ^{\scriptstyle 0}}\,(\gamma _1 I-Q)^{-1} \end{aligned}$$

for \(\gamma _2\) large enough. Using (3.20) with \(k=0\) and noting

$$\begin{aligned} \begin{bmatrix} 0&\quad Y_0\\ X_0&\quad 0 \end{bmatrix} \,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,(\gamma _1I-Q)^{-1},\quad \begin{bmatrix} \widehat{E}_0&\quad 0 \\ 0&\quad \widehat{F}_0 \end{bmatrix}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,(\gamma _1I-Q)^{-1}, \end{aligned}$$

we have

$$\begin{aligned} \begin{bmatrix} \widehat{E}_1&\quad Y_1 \\ X_1&\quad \widehat{F}_1 \end{bmatrix}&\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,(\gamma _1I-Q)^{-1}+(\gamma _1I-Q)^{-1}(\gamma _1I-Q)^{-1}(\gamma _1I-Q)^{-1}\\&\,{\mathop {=}\limits ^{\scriptstyle 0}}\,(\gamma _1I-Q)^{-1}+(\gamma _1I-Q)^{-1}\\&\,{\mathop {=}\limits ^{\scriptstyle 0}}\,(\gamma _1I-Q)^{-1} \\&\,{\mathop {=}\limits ^{\scriptstyle 0}}\,\begin{bmatrix} \widehat{E}_0&\quad Y_0\\ X_0&\quad \widehat{F}_0 \end{bmatrix}. \end{aligned}$$

This proves (A.4) for \(k=0\).

Now suppose (A.4) holds for \(k=\ell \). We can show that it also holds for \(k=\ell +1\) by using the following majorizations in the entrywise nonzero pattern

$$\begin{aligned} \begin{bmatrix} \widehat{E}_{\ell +1}&\quad 0 \\ 0&\quad \widehat{F}_{\ell +1} \end{bmatrix}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,\begin{bmatrix} \widehat{E}_{\ell }&\quad 0 \\ 0&\quad \hat{F}_{\ell } \end{bmatrix},\quad \begin{bmatrix} 0&\quad Y_{\ell +1} \\ X_{\ell +1}&\quad 0 \end{bmatrix}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,\begin{bmatrix} 0&\quad Y_{\ell } \\ X_{\ell }&\quad 0 \end{bmatrix} \\ \begin{bmatrix} I_m&\quad -Y_{\ell +1} \\ -X_{\ell +1}&\quad I_n \end{bmatrix}^{-1}\,{\mathop {\preceq }\limits ^{\scriptstyle 0}}\,\begin{bmatrix} I_m&\quad -Y_{\ell } \\ -X_{\ell }&\quad I_n \end{bmatrix}^{-1}. \end{aligned}$$

By induction, (A.4) holds for all k. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Li, RC. Highly accurate doubling algorithms for M-matrix algebraic Riccati equations. Numer. Math. 135, 733–767 (2017). https://doi.org/10.1007/s00211-016-0815-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0815-0

Mathematics Subject Classification

Navigation