Abstract
We model the electrical activity of biological cells under external stimuli via a novel boundary integral (BI) formulation together with a suitable time-space numerical discretization scheme. Ionic channels follow a non-linear dynamic behavior commonly described by systems of ordinary differential equations dependent on the electric potential jump across the membrane. Since potentials in both intra– and extracellular domains satisfy an electrostatic approximation, we represent them using solely Dirichlet and Neumann traces over the membrane via boundary potentials. Hence, the volume problem is condensed to one posed over the cell boundary. A second-order time-stepping semi-implicit numerical Galerkin scheme is proposed and analyzed wherein BI operators are approximated by low-order basis functions, with stability independent of space discretization.








Similar content being viewed by others
References
Agudelo-Toro, A., Neef, A.: Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. J. Neural. Eng. 10(2), 19 (2013)
Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67(222), 457–477 (1998)
Amar, M., Andreucci, D., Bisegna, P., Gianni, R.: Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics. Nonlinear Anal. Real World Appl. 6(2), 367–380 (2005)
Amsallem, D., Nordström, J.: High-order accurate difference schemes for the Hodgkin–Huxley equations. J. Comput. Phys. 252(1), 573–590 (2013)
Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)
Balay, S., Gropp, W., McInnes, L., Smith, B.: Petsc users manual, technical report anl-95/11- revision 2.1.0. Tech. rep., Argonne National Laboratory (2001)
Bhadra, N., Lahowetz, E., Foldes, S., Kilgore, K.: Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. J. Comput. Neurosci. 22(3), 313–326 (2007)
Bollini, C., Cacheiro, F.: Peripheral nerve stimulation. Tech. Region. Anesth. Pain Manag. 10(3), 79–88 (2006)
Bowman, B., McNeal, D.: Response of single alpha motoneurons to high-frequency pulse trains. Firing behavior and conduction block phenomenon. Appl. Neurophysiol. 49(3), 121–138 (1986)
Choi, C., Sun, S.: Simulation of axon activation by electrical stimulation applying alternating-direction-implicit finite differences time-domain method. IEEE Trans. Magn. 48(2), 639–642 (2012)
Choi, S.O., Kim, Y., Lee, J.W., Park, J.H., Prausnitz, M.R., Allen, M.G.: Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array. Small 10(8), 1081–1091 (2012)
Claeys, X., Hiptmair, R., Jerez-Hanckes, C.: Multitrace boundary integral equations. In: Direct and Inverse Problems in Wave Propagation and Applications, Radon Series on Computational and Applied Mathematics, vol. 14, pp. 51–100. De Gruyter, Berlin (2013)
Claeys, X., Hiptmair, R., Jerez-Hanckes, C., Pintarelli, S.: Novel multi-trace boundary integral equations for transmission boundary value problems. In: Fokas, A.S., Pelloni, B. (eds.) Unified Transform for Boundary Value Problems: Applications and Advances, chap. Novel Multi-Trace Boundary Integral Equations for Transmission Boundary Value Problems. SIAM (2015)
Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988). doi:10.1137/0519043
Doi, S., Inoue., J., Pan, Z., Tsumoto, K.: Computational Electrophysiology, vol. 2. Tokyo, Japan: Springer Series, A First Course in On Silico Medicine (2010)
Dotsinskya, I., Nikolovaa, B., Peychevab, E., Tsonevaa, I.: New modality for electrochemotherapy of surface tumors. Biotechnol. Biotechnol. Equip. 26(6), 3402–3406 (2012)
Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008)
Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, New York (2010)
Fear, E.C., Stuchly, M.A.: Modeling assemblies of biological cells exposed to electric fields. IEEE Trans. Biomed. Eng. 45(10), 1259–1271 (1998)
Foster, K.R., Sowers, A.E.: Dielectrophoretic forces and potentials induced on pairs of cells in an electric field. Biophys. J. 69(3), 777–784 (1995)
Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249 (1996)
Ganesh, M., Mustapha, K.: A fully discrete \(h^1\)-galerkin method with quadrature for nonlinear advection–diffusion-reaction equations. Numer. Algorithm. 43(4), 355–383 (2006)
Gimsa, J., Wachner, D.: Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81(4), 1888–1896 (2001)
Hanslien, M., Karlsen, K.H., Tveito, A.: A maximum principle for an explicit finite difference scheme approximating the hodgkin-huxley model. BIT Numer. Math. 45(4), 725–741 (2005)
Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv. Comput. Math. 37(1), 39–91 (2012)
Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)
Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008). doi:10.1007/978-3-540-68545-6
Jackson, J.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)
Joucla, S., Yvert, B.: Modeling extracellular electrical neural stimulation: from basic understanding to mea-based applications. J. Physiol. Paris 106(3), 146–158 (2012)
Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Springer, New York (1998)
Kotnik, T., Miklavčič, D.M.: Analytical description of transmembrane voltage induced by electric fields on spheroidal cell. Biophys. J. 79(2), 670–679 (2000)
Kotnik, T., Miklavčič, D., Slivnik, T.: Time course of transmembrane voltage induced by time-varying electric fields: a method for theoretical analysis and its application. Bioelectrochem. Bioenergy 45(1), 3–16 (1998)
Krassowska, W., Neu, J.C.: Response of a single cell to an external electric field. Biophys. J. 66(6), 1768–1776 (1994)
Leon, L.J., Roberge, F.A.: A new cable model formulation based on green’s theorem. Annl. Biomed. Eng. 18(1), 1–17 (1990)
Lindsay, K.: From Maxwell’s equations to the cable equation and beyond. Progr. Biophys. Mol. Biol. 85(1), 71–116 (2004)
Matano, H., Mori, Y.: Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discr. Contin. Dyn. Syst. 29(4), 1573–1636 (2011)
McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)
Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., Scherman, D.: High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Nat. Acad. Sci. USA 96(8), 4262–4267 (1999)
Pavlin, M., Pavselj, N., Miklavčič, D.: Dependence of induced transmembrane potential on cell density, arrangement and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49(6), 605–612 (2002)
Pham-Dang, C., Kick, O., Collet, T., Gouin, F., Pinaud, M.: Continuous peripheral nerve blocks with stimulating catheters. Reg. Anesth. Pain Med. 28(2), 83–88 (2003)
Plonsey, R., Heppner, D.: Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biol. 29(4), 657–664 (1967)
Pods, J., Schönke, J., Bastian, P.: Electrodiffusion models of neurons and extracellular space using the Poisson–Nernst–Planck equations: numerical simulation of the intra-and extracellular potential for an axon model. Biophys. J. 105(1), 242–254 (2013)
Pucihar, G., Miklavčič, D., Kotnik, T.: A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans. Biomed. Eng. 56(5), 1491–1501 (2009)
Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 3rd edn. Springer, Berlin (2007)
Rattay, F.: High frequency electrostimulation of excitable cells. J. Theor. Biol. 123(1), 45–45 (1986)
van Rienen, U., Schreiber, U., Schulze, S., Gimsa, U., Baumann, W., Weiss, D., Gimsa, J., Benecke, R., Pau, H.: Electro-quasistatic simulations in bio-systems engineering and medical engineering. Adv. Radio Sci. 3, 39–49 (2005)
Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)
See, C.H., Abd-Alhameed, R.A., Excell, P.S.: Computation of electromagnetic fields in assemblages of biological cells using a modified finite-difference time-domain scheme. IEEE Trans. Microw. Theory Tech. 55(9), 1986–1994 (2007)
Sepulveda, N., Wikswo, J., Echt, D.: Finite element analysis of cardiac defibrillation current distributions. IEEE Trans. Biomed. Eng. 37(4), 354–365 (1997)
Sersa, G., Cufer, T., Cemazar, M., Rebersek, M., Zvonimir, R.: Electrochemotherapy with bleomycin in the treatment of hypernephroma metastasis: case repeat and literature review. Tumori 86(2), 163–165 (2000)
Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008)
Susil, R., Semrov, D., Miklavčič, D.: Electric field-induced transmembrane potential depends on cell density and organization. Electr. Magnetobiol. 17(3), 391–399 (1998)
Teissié, J., Eynard, N., Gabriel, B., Rols, M.P.: Electropermeabilization of cell membranes. Adv. Drug. Del. Rev. 35(1), 3–19 (1999)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics, vol. 1054. Springer, Berlin (1984)
Trayanova, N., Constantino, J., Ashihara, T., Plank, G.: Modeling defibrillation of the heart: approaches and insights. IEEE Rev. Biomed. Eng. 4, 89–102 (2011)
Veneroni, M.: Reaction diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Methods Appl. Sci. 29(14), 1631–1661 (2006)
Xylouris, K., Queisser, G., Wittum, G.: A three-dimensional mathematical model of active signal processing in axons. Comput. Vis. Sci. 13(8), 409–418 (2010)
Ying, W., Henriquez, C.: Hybrid finite element method for describing the electrical response of biological cells to applied fields. IEEE Trans. Biomed. Eng. 54(4), 611–620 (2007)
Zeidler, E.: Nonlinear Functional Analysis and its Applications. Linear Monotone Operators, vol. II/A. Springer, New York (1989)
Author information
Authors and Affiliations
Corresponding author
Additional information
Work partially funded by projects Fondecyt 11121166, Conicyt ACT1118 and PUC Chile VRI Interdisciplina 11/2012.
Appendices
Appendix A: Proof of Lemma 7
Assume \(\phi \in \mathcal {C}^2[0,T]\), then for \(t_1\), \(t_2\in [0,T]\) and \(t^{\star }:=\dfrac{t_1+t_2}{2}\) it holds
Then
For \(u\in \mathcal {C}^2([0,T]; L^2(\Gamma ))\), from (38) and the definition of \(\bar{u}^{n+\frac{1}{2}}\) it holds
and
By writing \(u^{n+\frac{1}{2}}-\hat{u}^{n+\frac{1}{2}} = (u^{n+\frac{1}{2}}-\bar{u}^{n+\frac{1}{2}}) + (\bar{u}^{n+\frac{1}{2}}-\hat{u}^{n+\frac{1}{2}})\) together with the triangle inequality and (38) one can show that
If we further assume \(\phi \in \mathcal {C}^3[0,T]\), then it holds
Thus, for \(u\in \mathcal {C}^3([0,T]; L^2(\Gamma ))\), one proves
from where the result follows.
Appendix B: Proof of Lemma 10
For all \(\varphi _h\in \mathcal {S}^1_h(\Gamma )\), we compute the discrete quantities:
then by adding a suitable zero, we write
Then,
Choosing \(\varphi _h = \bar{\theta }^{n+\frac{1}{2}}\) and by ellipticity of \(\mathsf {d}_{\Gamma }(\cdot ,\cdot )\) (cf. Lemma 4), we get
For the first term on the right hand side of (39), employ Young’s inequality for \(\delta >0\), Lemmae 7 and 9 to obtain
By (30), it holds \(\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}}, \varphi _h\right) =\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-w_h^{n+\frac{1}{2}}, \varphi _h\right) \) for all \(\varphi _h\in \mathcal {S}^1_h(\Gamma )\). Then, for the second term on the right hand side in (39) by Young’s inequality for \(\delta >0\), the continuity of \(\mathsf {d}_{\Gamma }(\cdot ,\cdot )\), Lemmae 4 and 7 we get
As for the last term on the right hand side of (39), we estimate
where \(\mathcal {I}_hi_{\text{ ion }}(v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}})\) is the nodal interpolation of the function \(i_{\text{ ion }}(v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}})\). Again by Young’s inequality for \(\delta >0\)
Then, by Lemma 5 we conclude
By (3), one derives
Putting all bounds together yields
The continuous embedding of \(H^{\frac{1}{2}}(\Gamma )\) into \(L^2(\Gamma )\) means \(\left\| u \right\| _{L^2(\Gamma )}\le c_{\Gamma }\left\| u \right\| _{H^{\frac{1}{2}}(\Gamma )}\) for all \(u\in H^{\frac{1}{2}}(\Gamma )\) [51]. Then choosing \(\delta = \frac{c^2_{\Gamma }}{\mu }\left( \frac{c_m}{2}+1\right) +\frac{\alpha }{2\mu }\) renders
Observe that \(\delta \) is independent of h and \(\tau \). By (36), it holds
and
Reordering terms yields
where \(\tilde{\delta } = 4\displaystyle \delta \frac{c^2_{\text{ ion }}}{c_m}\). Using the discrete version of Gronwall’s Lemma [44, Lemma 11.2] leads to
Finally, by recalling
together with \(1+2\tilde{\delta }\tau \le \exp \left( 2\tilde{\delta }\tau \right) \) and \(t_{n} = n\tau \),
which is the first estimate stated in Lemma 10. For the second one, at each node \(\mathbf{x}_m\), \(m=1,\ldots , L\), it holds
where \(v^{n+\frac{1}{2}}_m =v^{n+\frac{1}{2}}(\mathbf {x}_m)\) and \(\mathbf{g}^{n+\frac{1}{2}}_m = \mathbf{g}^{n+\frac{1}{2}}(\mathbf {x}_m)\). From Taylor’s expansion around \(t_{n+\frac{1}{2}}\), we obtain
where \(\xi ^n_1\in \left[ t_{n+\frac{1}{2}},t_{n+1}\right] \) and \(\xi ^n_2\in \left[ t_n,t_{n+\frac{1}{2}}\right] \). Subtracting (42a) and (42b) and using (41) yields
From Problem 5, at each node it holds
for \(m=1,\ldots ,L\), and subtraction with (43) delivers
By (4) we have
Moreover, by Lemma 7, it holds
Then,
Reordering terms and naming \(\mathbf{e}^{n}_m = \mathbf{g}^{n}_{h,m} - \mathbf{g}^{n}_{m}\) we get
where
Again, using the discrete version of Gronwall’s Lemma [44, Lemma 11.2]
From the component-wise inequalities one derives estimates for entire \(L^2(\Gamma )\)-norm and one can conclude,
Finally, recalling the basic geometric sum:
together with \(1+2c_{\mathcal {HH}}\tau \le \exp \left( 2c_{\mathcal {HH}}\tau \right) \) and \(t_{n} = n\tau \), one finally obtains
as stated.
Rights and permissions
About this article
Cite this article
Henríquez, F., Jerez-Hanckes, C. & Altermatt, F. Boundary integral formulation and semi-implicit scheme coupling for modeling cells under electrical stimulation. Numer. Math. 136, 101–145 (2017). https://doi.org/10.1007/s00211-016-0835-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0835-9