Abstract
We present an interior penalty discontinuous Galerkin scheme for a two-phase porous media flow model that incorporates dynamic effects in the capillary pressure. The approximation of the mass-conservation laws is performed in their original formulation, without introducing a global pressure. We prove the existence of a solution to the emerging fully discrete systems and the convergence of the scheme. Error-estimates are obtained for sufficiently smooth data.



Similar content being viewed by others
References
Adams, R., Fournier, J.: Sobolev Spaces. Pure and Applied Mathematics. Elsevier Science, Amsterdam (2003)
Babuska, I., Suri, M.: The \(h-p\) version of the finite element method with quasiuniform meshes. ESAIM Math. Model. Numer. Anal. Modlisation Math. Anal. Numrique 21(2), 199–238 (1987)
Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18(5), 779–796 (2014). doi:10.1007/s10596-014-9426-y
Bastian, P., Blatt, M., Dedner, A., Engwer, C., Fahlke, J., Gräser, C., Klöfkorn, R., Nolte, M., Ohlberger, M., Sander, O.: DUNE Web page (2011). http://www.dune-project.org
Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Comput. 82(2), 103–119 (2008). doi:10.1007/s00607-008-0003-x
Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika 46(2), 294–315 (2010)
Bastian, P., Riviere, B.: Superconvergence and h(div) projection for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 42(10), 1043–1057 (2003). doi:10.1002/fld.562
Bear, J.: Dynamics of fluids in porous media. Dover Publications (2013). ISBN:9780486131801
Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Hydrology Papers, Colorado State University 3 (1964)
Burdine, N.: Relative permeability calculations from pore size distribution data. J. Pet. Technol. 5(3), 71–78 (1953). doi:10.2118/225-G
Cao, X., Nemadjieu, S., Pop, I.S.: A multipoint flux approximation finite volume scheme for two phase porous media flow with dynamic capillarity. CASA-Report 15–33, Eindhoven University of Technology (2015)
Cao, X., Pop, I.S.: Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutions. Comput. Math. Appl. 69(7), 688–695 (2015). doi:10.1016/j.camwa.2015.02.009
Cao, X., Pop, I.S.: Degenerate two-phase porous media flow model with dynamic capillarity. J. Differ. Equ. 260(3), 2418–2456 (2016). doi:10.1016/j.jde.2015.10.008
Chavent, G., Jaffre, J.: Mathematical models and finite elements for reservoir simulation single phase, multiphase and multicomponent flows through porous media. In: Studies in mathematics and its applications. Elsevier, North Holland, Amsterdam (1986)
Demmel, J., Gilbert, J., Li, X.: Superlu users’ guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (1999). http://crd-legacy.lbl.gov/~xiaoye/SuperLU/. Last update: September 2007
Deuflhard, P.: Newton methods for nonlinear problems: affine invariance and adaptive algorithms. In: Springer series in computational mathematics, vol. 35. Springer, Berlin, Heidelberg, New York (2011)
Di Pietro, D., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79(271), 1303–1330 (2010)
Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2012)
DiCarlo, D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40(4) 1944–7973 (2004). doi:10.1029/2003WR002670
Diersch, H.J., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., Ehrnsperger, B., Virgilio, R.: Modeling unsaturated flow in absorbent swelling porous media: part 1. Theory. Transp. Porous Media 83(3), 437–464 (2010). doi:10.1007/s11242-009-9454-6
van Duijn, C., Fan, Y., Peletier, L., Pop, I.S.: Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media. Nonlinear Anal. Real World Appl. 14(3), 1361–1383 (2013). doi:10.1016/j.nonrwa.2012.10.002
van Duijn, C., Cao, X., Pop, I.S.: Two-phase flow in porous media: dynamic capillarity and heterogeneous media. Transp. Porous Media 1–26 (2015). doi:10.1007/s11242-015-0547-0
Durlofsky, L.: A triangle based mixed finite element–finite volume technique for modeling two phase flow through porous media. J. Comput. Phys. 105(2), 252–266 (1993). doi:10.1006/jcph.1993.1072
Epshteyn, Y., Riviere, B.: Analysis of discontinuous Galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225(2), 487–509 (2009). doi:10.1016/j.cam.2008.08.026
Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(2324), 1491–1501 (2010). doi:10.1016/j.cma.2009.12.014
Evans, L.C.: Partial differential equations. In: Graduate studies in mathematics. American Mathematical Society (1998)
Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. Math. Model. Numer. Anal. 37, 2003 (2003)
Fan, Y., Pop, I.S.: A class of pseudo-parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler-implicit discretization. Math. Methods Appl. Sci. 34, 2329–2339 (2011). doi:10.1002/mma.1537
Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)
Hassanizadeh, S., Beliaev, A.: A theoretical model of hysteresis and dynamic effects in thecapillary relation for two-phase flow in porous media. Transp. Porous Media 43(3), 487–510 (2001). doi:10.1023/A:1010736108256
Hassanizadeh, S., Gray, W.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993). doi:10.1029/93WR01495
Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Environmental Engineering. Springer, Berlin (1997)
Helmig, R., Weiss, A., Wohlmuth, B.: Dynamic capillary effects in heterogeneous porous media. Comput. Geosci. 11(3), 261–274 (2007). doi:10.1007/s10596-007-9050-1
Kissling, F., Rohde, C.: The computation of nonclassical shock waves with a heterogeneous multiscale method. Netw. Heterog. Media 5(3), 661–674 (2010). doi:10.3934/nhm.2010.5.661
Koch, J., Rätz, A., Schweizer, B.: Two-phase flow equations with a dynamic capillary pressure. Eur. J. Appl. Math. 24, 49–75 (2013). doi:10.1017/S0956792512000307
List, F., Radu, F.A.: A study on iterative methods for solving Richards equation. Comput. Geosci. 20(2), 341–353 (2016). doi:10.1007/s10596-016-9566-3
Mikelic, A.: A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure. J. Differ. Equ. 248(6), 1561–1577 (2010). doi:10.1016/j.jde.2009.11.022
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976). doi:10.1029/WR012i003p00513
Nordbotten, J.M., Celia, M.A.: Geological storage of CO2: modeling approaches for large-scale simulation. In: Geological storage of CO\(_2\). Wiley, Hoboken, New Jersey (2012)
Radu, F., Pop, I.S.: Mixed finite element discretization and Newton iteration for a reactive contaminant transport model with nonequilibrium sorption: convergence analysis and error estimates. Comput. Geosci. 15(3), 431–450 (2011)
Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289(0), 134–141 (2015). doi:10.1016/j.cam.2015.02.051. Sixth International Conference on Advanced Computational Methods in Engineering (ACOMEN 2014)
Rätz, A., Schweizer, B.: Hysteresis models and gravity fingering in porous media. ZAMM J. Appl. Math. Mech. Z. für Angew. Math. und Mech. 94(7–8), 645–654 (2014)
Riviere, B., Wheeler, M., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001). doi:10.1137/S003614290037174X
Sun, S., Wheeler, M.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43(1), 195–219 (2005). doi:10.1137/S003614290241708X
Temam, R.: Navier–Stokes equations: theory and numerical analysis, vol. 343. American Mathematical Soc. Chelsea Publishing (2001) (Reprint of the 1984 edition)
Van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)
Warburton, T., Hesthaven, J.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003). doi:10.1016/S0045-7825(03)00294-9
Acknowledgments
Stefan Karpinski wants to thank Prof. B.I. Wohlmuth for the introduction to this interesting topic and the guidance through his first years in academia. He would also like to express his gratitude to his employers, Dr. Roman Rojko and Dr. Stefan Zaprianov from ESPRiT Engineering GmbH for their mentorship and support. Special thanks also to Prof. F.A. Radu (Bergen) for the fruitful and productive discussions during his visit to the University of Bergen. This stay was supported by the International Research Training Group NUPUS, funded by the German Research Foundation DFG (GRK 1398), the Netherlands Organization for Scientific Research NWO (DN 81-754) and by the Research Council of Norway (215627). Iuliu Sorin Pop acknowledges the support from the Akademia grant of Statoil and from the Shell-NWO/FOM CSER programme (project 14CSER016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karpinski, S., Pop, I.S. Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillary effects. Numer. Math. 136, 249–286 (2017). https://doi.org/10.1007/s00211-016-0839-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0839-5