Abstract
In this paper we propose a heuristic stopping rule of Hanke–Raus type for the regularization of linear ill-posed inverse problems by the augmented Lagrangian method. This stopping rule requires no information on the noise level. Under certain source conditions, we derive a posteriori error estimates in term of Bregman distance. By imposing certain conditions on the noise data, we establish convergence results. Numerical results are presented to illustrate the performance.


Similar content being viewed by others
References
Bakushinskii, A.B.: Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion. USSR Comput. Math. Math. Phys. 24(4), 181–182 (1984)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Berlin (1996)
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland Publ. Co, Amsterdam (1983)
Frick, K., Grasmair, M.: Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities. Inverse Probl. 28(10), 104005 (2012)
Frick, K., Lorenz, D., Resmerita, E.: Morozov’s principle for the augmented Lagrangian method applied to linear inverse problems. Multiscale Model. Simul. 9(4), 1528–1548 (2011)
Frick, K., Scherzer, O.: Regularization of ill-posed linear equations by the non-stationary augmented Lagrangian method. J. Integral Equ. Appl. 22(2), 217–257 (2010)
Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991)
Hanke, M., Raus, T.: A general heuristic for choosing the regularization parameter in ill-posed problems. SIAM J. Sci. Comput. 17(4), 956–972 (1996)
Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)
Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
Hofmann, B., Kaltenbacher, B., Pöschl, C., Scherzer, O.: A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Prob. 23, 987–1010 (2007)
Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)
Jin, B., Lorenz, D.A.: Heuristic parameter-choice rules for convex variational regularization based on error estimates. SIAM J. Numer. Anal. 48(3), 1208–1229 (2010)
Jin, Q.: Hanke–Raus heuristic rule for variational regularization in Banach spaces. Inverse Probl. 32, 085008 (2016)
Jin, Q., Stals, L.: Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Inverse Probl. 28, 104011 (2012)
Jin, Q., Zhong, M.: Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer. Math. 127, 485–513 (2014)
Kindermann, S., Neubauer, A.: On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization. Inverse Probl. Imaging 2(2), 291–299 (2008)
Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
Schuster, T., Kaltenbacher, B., Hofmann, B. and Kazimierski, K.S.: Regularization Methods in Banach Spaces, Radon Series on Computational and Applied Mathematics 10. Walter de Gruyter, Berlin (2012)
Tikhonov, A.N., Glasko, V.B., Kriksin, J.A.: On the question of quasi-optimal choice of a regularized approximation. Dokl. Akad. Nauk. 248, 531–535 (1979)
Wahba, G.: The approximate solution of linear operator equations when data are noisy. SIAM J. Numer. Anal. 14, 651–667 (1977)
Zălinscu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Inc, River Edge (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, Q. On a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian method. Numer. Math. 136, 973–992 (2017). https://doi.org/10.1007/s00211-016-0860-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-016-0860-8