Skip to main content
Log in

Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose and analyze two novel decoupled numerical schemes for solving the Cahn–Hilliard–Stokes–Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn–Hilliard equation) from the velocity field (Stokes–Darcy fluid equations). To further decouple the Stokes–Darcy system, we introduce a first order pressure stabilization term in the Darcy solver in the second numerical scheme so that the Stokes system is decoupled from the Darcy system and hence the CHSD system can be solved in a fully decoupled manner. We show that both decoupled numerical schemes are uniquely solvable, energy stable, and mass conservative. Ample numerical results are presented to demonstrate the accuracy and efficiency of our schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Invertibility is equivalent to a trivial kernel for a square matrix.

References

  1. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 3, 197–207 (1967). doi:10.1017/S0022112067001375

    Article  Google Scholar 

  2. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8(1), 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Analysis and finite element approximation of a coupled, continuum pipe-flow/Darcy model for flow in porous media with embedded conduits. Numer. Methods Partial Differ. Equ. 27(5), 1242–1252 (2011). doi:10.1002/num.20579

    Article  MathSciNet  MATH  Google Scholar 

  4. Cesmelioglu, A., Girault, V., Rivière, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. 47(2), 539–554 (2013). doi:10.1051/m2an/2012034

    Article  MathSciNet  MATH  Google Scholar 

  5. Çeşmelioğlu, A., Rivière, B.: Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow. J. Numer. Math. 16(4), 249–280 (2008). doi:10.1515/JNUM.2008.012

    MathSciNet  MATH  Google Scholar 

  6. Çeşmelioğlu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navie-r-Stokes/Darcy-transport problem. J. Differ. Equ. 252(7), 4138–4175 (2012). doi:10.1016/j.jde.2011.12.001

    Article  MATH  Google Scholar 

  7. Chen, J., Sun, S., Wang, X.P.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014). doi:10.1016/j.jcp.2014.02.043

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, N., Gunzburger, M., Wang, X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system. J. Math. Anal. Appl. 368(2), 658–676 (2010). doi:10.1016/j.jmaa.2010.02.022

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011). doi:10.1137/080740556

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013). doi:10.1137/120897705

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system. Numer. Math. (2015). doi:10.1007/s00211-015-0789-3

    MATH  Google Scholar 

  12. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009). doi:10.1016/j.cma.2009.08.012

    Article  MathSciNet  MATH  Google Scholar 

  13. Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, C., Shen, J., Wise, S.M.: An efficient, energy stable scheme for the Cahn–Hilliard–Brinkman system. Commun. Comput. Phys. 13(4), 929–957 (2013). doi:10.4208/cicp.171211.130412a

    Article  MathSciNet  Google Scholar 

  15. Diegel, A.E., Feng, X.H., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015). doi:10.1137/130950628

    Article  MathSciNet  MATH  Google Scholar 

  16. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002). doi:10.1016/S0168-9274(02)00125-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of the Stokes and Darcy equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications, vol. 320, pp. 3–20. Springer, Milan (2003)

  18. Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009). doi:10.5209/rev_REMA.2009.v22.n2.16263

    Article  MathSciNet  MATH  Google Scholar 

  19. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc., vol. 529, pp. 39–46. MRS, Warrendale (1998). doi:10.1557/PROC-529-39

  20. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). doi:10.1007/978-3-642-61623-5

    Book  MATH  Google Scholar 

  21. Grn, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51(6), 3036–3061 (2013). doi:10.1137/130908208

    Article  MathSciNet  MATH  Google Scholar 

  22. Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003). doi:10.1137/S0036142901395400. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). doi:10.1016/j.jcp.2012.09.020

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014). doi:10.1016/j.jcp.2014.07.038

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Methods Appl. Sci. 37(18), 3048–3063 (2014). doi:10.1002/mma.3043

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015). doi:10.1016/j.jcp.2015.02.046

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, D., Wang, X.: Decoupled energy-law preserving numerical schemes for the Cahn–Hilliard–Darcy system. Numer. Methods Partial Differ. Equ. 32(3), 936–954 (2016). doi:10.1002/num.22036

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry. J. Differ. Equ. 257(10), 3887–3933 (2014). doi:10.1016/j.jde.2014.07.013

    Article  MathSciNet  MATH  Google Scholar 

  29. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228(15), 5323–5339 (2009). doi:10.1016/j.jcp.2009.04.020

    Article  MathSciNet  MATH  Google Scholar 

  31. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000). doi:10.1137/S003613999833678X. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Math. Proc. Camb. Philos. Soc. 73, 231–238 (1973). doi:10.1017/S0305004100047642

    Article  MATH  Google Scholar 

  33. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound 10(1), 15–43 (2008). doi:10.4171/IFB/178

    Article  MathSciNet  Google Scholar 

  34. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004). doi:10.1016/j.jcp.2003.07.035

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985). doi:10.1016/0021-9991(85)90148-2

    Article  MathSciNet  MATH  Google Scholar 

  36. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002). doi:10.1137/S0036142901392766

    Article  MathSciNet  MATH  Google Scholar 

  37. Magaletti, F., Picano, F., Chinappi, M., Marino, L., Casciola, C.M.: The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95–126 (2013). doi:10.1017/jfm.2012.461

    Article  MathSciNet  MATH  Google Scholar 

  38. Marchuk, G.: 3-The splitting-up method. In: Marchuk, G. (ed.) Numerical Methods in Weather Prediction, pp. 84–115. Academic Press, Cambridge (1974). doi:10.1016/B978-0-12-470650-7.50008-6

    Google Scholar 

  39. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013). doi:10.1002/num.21721

    Article  MathSciNet  MATH  Google Scholar 

  40. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79(270), 707–731 (2010). doi:10.1090/S0025-5718-09-02302-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Article  MATH  Google Scholar 

  42. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65(215), 1039–1065 (1996). doi:10.1090/S0025-5718-96-00750-8

    Article  MathSciNet  MATH  Google Scholar 

  43. Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Multiscale Modeling and Analysis for Materials Simulation, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 22, pp. 147–195. World Sci. Publ., Hackensack(2012). doi:10.1142/9789814360906_0003

  44. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012). doi:10.1137/110822839

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010). doi:10.3934/dcds.2010.28.1669

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010). doi:10.1137/09075860X

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015). doi:10.1137/140971154

    Article  MathSciNet  MATH  Google Scholar 

  48. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  49. Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115–152 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  50. Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  Google Scholar 

  51. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7(3), 870–891 (1986). doi:10.1137/0907059

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, X.: Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete Contin. Dyn. Syst. 36(8), 4599–4618 (2016). doi:10.3934/dcds.2016.36.4599

    Article  MathSciNet  MATH  Google Scholar 

  53. Wise, S.M.: Unconditionally stable finite difference, nonlinearmultigrid simulation of the Cahn–Hilliard–Hele–Shaw systemof equations. J. Sci. Comput. 44(1), 38–68 (2010). doi:10.1007/s10915-010-9363-4

    Article  MathSciNet  MATH  Google Scholar 

  54. Yanenko, N.N.: The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer, New York (1971). (Translated from the Russian by T. Cheron. English translation edited by M. Holt)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wang.

Additional information

Supported in part by an NSF Grant DMS-1312701. Wenbin Chen is supported by the NSFC (11671098,11331004, 91630309), and a 111 Project (B08018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Han, D. & Wang, X. Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry. Numer. Math. 137, 229–255 (2017). https://doi.org/10.1007/s00211-017-0870-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0870-1

Mathematics Subject Classification