Abstract
In this paper, we couple regularization techniques with the adaptive hp-version of the boundary element method (hp-BEM) for the efficient numerical solution of linear elastic problems with nonmonotone contact boundary conditions. As a model example we treat the delamination of composite structures with a contaminated interface layer. This problem has a weak formulation in terms of a nonsmooth variational inequality. The resulting hemivariational inequality is first regularized and then discretized by an adaptive hp-BEM. We give conditions for the uniqueness of the solution and provide an a-priori error estimate. Furthermore, we prove the very first a-posteriori error estimate for the nonsmooth variational problem utilizing a novel mixed regularized formulation, thus enabling hp-adaptivity. Various numerical experiments illustrate the behavior, strengths and limitations of the proposed high-order approximation scheme.










Similar content being viewed by others
References
Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)
Banz, L., Gimperlein, H., Issaoui, A., Stephan, E.P.: Stabilized mixed \(hp\)-BEM for frictional contact problems in linear elasticity. Numer. Math. 135, 217–263 (2017)
Banz, L., Stephan, E.P.: A posteriori error estimates of \(hp\)-adaptive IPDG-FEM for elliptic obstacle problems. Appl. Numer. Math. 76, 76–92 (2014)
Banz, L., Stephan, E.P.: On hp-adaptive BEM for frictional contact problems in linear elasticity. Comput. Math. Appl. 69(7), 559–581 (2015)
Bernardi, C., Maday, Y.: Spectral methods. In: Handb. Numer. Anal., vol. V, pp. 209–485. North-Holland, Amsterdam (1997)
Braess, D.: A posteriori error estimators for obstacle problems-another look. Numer. Math. 101(3), 415–421 (2005)
Carstensen, C.: Interface problem in holonomic elastoplasticity. Math. Methods Appl. Sci. 16(11), 819–835 (1993)
Carstensen, C.: A posteriori error estimate for the symmetric coupling of finite elements and boundary elements. Computing 57(4), 301–322 (1996)
Carstensen, C., Funken, S.A., Stephan, E.P.: On the adaptive coupling of FEM and BEM in 2-d-elasticity. Numer. Math. 77(2), 187–221 (1997)
Carstensen, C., Gwinner, J.: FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34(5), 1845–1864 (1997)
Chernov, A.: Nonconforming boundary elements and finite elements for interface and contact problems with friction–hp-version for mortar, penalty and Nitsche’s methods. Ph.D. thesis, Universität Hannover (2006)
Chernov, A., Maischak, M., Stephan, E.P.: hp-Mortar boundary element method for two-body contact problems with friction. Math. Methods Appl. Sci. 31(17), 2029–2054 (2008)
Ciarlet, P., Lions, J., et al.: Handbook of Numerical Analysis. Elsevier, Amsterdam (1997)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)
Costabel, M., Stephan, E.P.: Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27(5), 1212–1226 (1990)
Dao, M., Gwinner, J., Noll, D., Ovcharova, N.: Nonconvex bundle method with application to a delamination problem. Comput. Optim. Appl. 65(1), 173–203 (2016)
Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer, Berlin, Heidelberg (1984)
Guediri, H.: On a boundary variational inequality of the second kind modelling a friction problem. Math. Methods Appl. Sci. 25(2), 93–114 (2002)
Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. Ph.D. thesis, Universität Mannheim (1978)
Gwinner, J.: hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)
Gwinner, J., Ovcharova, N.: From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics. Optimization 64(8), 1683–1702 (2015)
Gwinner, J., Stephan, E.P.: A boundary element procedure for contact problems in linear elastostatics. ESAIM Math. Model. Numer. Anal. 27(4), 457–480 (1993)
Han, H.D.: A direct boundary element method for Signorini problems. Math. Comput. 55(191), 115–128 (1990)
Hlavácek, I., Haslinger, J., Necas, J., Lovísek, J.: Solution of Variational Inequalities in Mechanics. Springer, Berlin (1988)
Houston, P., Süli, E.: A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(2–5), 229–243 (2005)
Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008)
Kleiber, M., Borkowski, A.: Handbook of Computational Solid Mechanics: Survey and Comparison of Contemporary Methods. Springer, Berlin (1998)
Krebs, A., Stephan, E.: A p-version finite element method for nonlinear elliptic variational inequalities in 2D. Numer. Math. 105(3), 457–480 (2007)
Maischak, M., Stephan, E.P.: A FEM–BEM coupling method for a nonlinear transmission problem modelling Coulomb friction contact. Comput. Methods Appl. Mech. Eng. 194(2), 453–466 (2005)
Maischak, M., Stephan, E.P.: Adaptive hp-versions of BEM for Signorini problems. Appl. Numer. Math. 54(3), 425–449 (2005)
Maischak, M., Stephan, E.P.: Adaptive hp-versions of boundary element methods for elastic contact problems. Comput. Mech. 39(5), 597–607 (2007)
Nesemann, L., Stephan, E.P.: Numerical solution of an adhesion problem with FEM and BEM. Appl. Numer. Math. 62(5), 606–619 (2012)
Ovcharova, N.: Regularization Methods and Finite Element Approximation of Hemivariational Inequalities with Applications to Nonmonotone Contact Problems. Ph.D. thesis, Universität der Bundeswehr München (2012)
Ovcharova, N.: On the coupling of regularization techniques and the boundary element method for a hemivariational inequality modelling a delamination problem. Math. Methods Appl. Sci. 40(1), 60–77 (2017)
Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162(3), 754–778 (2014)
Sloan, I.H., Spence, A.: The Galerkin method for integral equations of the first kind with logarithmic kernel: theory. IMA J. Numer. Anal. 8(1), 105–122 (1988)
Steinbach, O.: Numerische Näherungsverfahren für elliptische Randwertprobleme: Finite Elemente und Randelemente. Vieweg + Teubner (2003)
Stephan, E.P.: The hp-version of BEM fast convergence, adaptivity and efficient preconditioning. J. Comput. Math. 27(2–3), 348–359 (2009)
Wetzel, M., Holtmannspötter, J., Gudladt, H.J., Czarnecki, J.: Sensitivity of double cantilever beam test to surface contamination and surface pretreatment. Int. J. Adhes. Adhes. 46, 114–121 (2013)
Acknowledgements
The authors are grateful to J. Gwinner for the helpful discussions and comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ovcharova, N., Banz, L. Coupling regularization and adaptive hp-BEM for the solution of a delamination problem. Numer. Math. 137, 303–337 (2017). https://doi.org/10.1007/s00211-017-0879-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-017-0879-5