Skip to main content
Log in

Two robust nonconforming \(\hbox {H}^2\)-elements for linear strain gradient elasticity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose two finite elements to approximate a boundary value problem arising from strain gradient elasticity, which is a high order perturbation of the linearized elastic system. Our elements are \(\hbox {H}^2\)-nonconforming while \(\hbox {H}^1\)-conforming. We show both elements converge in the energy norm uniformly with respect to the perturbation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic, New York (2003)

    MATH  Google Scholar 

  2. Akarapu, S., Zbib, H.: Numerical analysis of plane cracks in strain-gradient elastic materials. Int. J. Fract. 141, 403–430 (2006)

    Article  MATH  Google Scholar 

  3. Altan, S., Aifantis, E.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Metal. Mater. 26, 319–324 (1992)

    Article  Google Scholar 

  4. Amanatidou, E., Aravas, N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2006)

    Article  MATH  Google Scholar 

  5. Argyris, J., Fried, I., Scharpf, D.: The Tuba family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968)

    Google Scholar 

  6. Askes, H., Aifantis, E.: Numerical modeling of size effects with gradient elasticity-formulation, meshless discretization and examples. Int. J. Frac. 117, 347–358 (2002)

    Article  Google Scholar 

  7. Bell, K.: A refined triangular plate bending element. Int. J. Numer. Methods Eng. 1, 101–122 (1969)

    Article  Google Scholar 

  8. Berger, A., Scott, R., Strang, G.: Approximate boundary conditions in the finite element method. Symp. Math. X, 295–313 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Brenner, S.: Korn’s inequalities for piecewise H\(^1\) vector fields. Math. Comp. 73, 1067–1087 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S., Neilan, M.: A \(\text{ C }^{\,0}\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Ciarlet, P., Raviart, P.A.: General Lagrange and Hermite interpolation in \(\text{ R }^n\) with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177–199 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cosserar, E., Cosserat, F.: Theorie des corps deformables. Herman et fils, Paris (1909)

    MATH  Google Scholar 

  14. Exadaktylos, G., Aifantis, E.: Two and three dimensional crack problems in gradient elasticity. J. Mech. Behav. Mater. 7, 93–118 (1996)

    Article  Google Scholar 

  15. Falk, R.: Nonconforming finite element methods for the equation of linear elasticity. Math. Comput. 57, 529–550 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guzmán, J., Leykekhman, D., Neilan, M.: A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49, 95–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansbo, P., Larson, M.: Discontinuous Galerkin methods for incompressible and nearly incompressibly elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)

    Article  MATH  Google Scholar 

  18. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 10, 165–269 (1908)

    MathSciNet  MATH  Google Scholar 

  19. Korn, A.: Über einige ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. Umiejetnosci. (Classe Sci Math Nat) pp 706–724 (1909)

  20. Ma, Q., Clarke, D.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  21. Mardal, K., Winther, R.: An observation on Korn’s inequality for nonconforming finite element methods. Math. Comput. 75, 1–6 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mardal, K., Tai, X., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mindlin, R.: Microstructure in linear elasticity. Arch. Rational Mech. Anal. 10, 51–78 (1964)

    MATH  Google Scholar 

  24. Mindlin, R., Eshel, N.: On the first strain-gradient theories of linear elasticity. Int. J. Solid Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  25. Ming, P.B., Shi, Z.C.: Nonconforming rotated \(\text{ Q }_1\) element for Reissner–Mindlin plate. Math. Model Methods Appl. Sci. 11, 1311–1342 (2001)

    Article  MATH  Google Scholar 

  26. Nilssen, T., Tai, X., Winther, R.: A robust nonconforming \(\text{ H }^2\)-element. Math. Comput. 70, 489–505 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papanastasiou, S.A., Zervos, A., Vardoulakis, I.: A three-dimensional \(\text{ C }^{\,1}\) finite element for gradient elasticity. Int. J. Numer. Eng. 135, 1396–1415 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Ru, C., Aifantis, E.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101, 59–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soh, A.K., Chen, W.: Finite element formulations of strain gradient theory for microstructures and the \(\text{ C }^{0-1}\) patch test. Int. J. Numer. Methods Eng. 61, 433–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, L., Wu, Y., Xie, X.: Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems. Numer. Methods Partial Differ. Equ. 29, 721–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, Y.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A Solids 25, 897–913 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zervos, A., Papanastasiou, P., Vardoulakis, I.: Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity. Int. J. Soilds Struct. 38, 5081–5095 (2001)

    Article  MATH  Google Scholar 

  33. Zervos, A., Papanastasiou, S.A., Vardoulakis, I.: Two finite element discretizations for gradient elasticity. J. Eng. Mech. 135, 203–213 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work of Li was supported by Science Challenge Project No. TZ 2016003. The work of Ming was partially supported by the National Natural Science Foundation of China for Distinguished Young Scholars 11425106, and National Natural Science Foundation of China Grants 91630313, and by the support of CAS NCMIS. The work of Shi was partially supported by the National Natural Science Foundation of China Grant 11371359. We are grateful to the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbing Ming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ming, P. & Shi, Zc. Two robust nonconforming \(\hbox {H}^2\)-elements for linear strain gradient elasticity. Numer. Math. 137, 691–711 (2017). https://doi.org/10.1007/s00211-017-0890-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0890-x

Mathematics Subject Classification