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Abstract

Non-dominated sorting arranges a set of points in n-dimensional Euclidean space into

layers by repeatedly removing the coordinatewise minimal elements. It was recently shown

that nondominated sorting of random points has a Hamilton-Jacobi equation continuum

limit. The obvious numerical scheme for this PDE has a slow convergence rate of O(h
1

n ).
In this paper, we introduce two new numerical schemes that have formal rates of O(h)
and we prove the usual O(

√
h) theoretical rates. We also present the results of numerical

simulations illustrating the difference between the formal and theoretical rates.

1 Introduction

In this paper, we introduce new finite difference schemes for the Hamilton-Jacobi equation

ux1
· · · uxn = f in R

n
+

u = 0 on ∂Rn
+,

}
(1.1)

and prove rates of convergence.
The Hamilton-Jacobi equation (1.1) appeared recently as the continuum limit of nondom-

inated sorting, which is widely used in scientific and engineering contexts [5]. Let us briefly
describe the connection. Let X1, . . . ,XN be i.i.d. random variables on R

n
+ with continuous

density f . Let F1 denote the elements in S := {X1, . . . ,XN} that are coordinatewise minimal.
The set F1 is called the first Pareto front of S, and the elements of F1 are called Pareto optimal
or nondominated. The second Pareto front, denoted F2, is the set of minimal elements from
S \ F1, and the kth Pareto front is defined as

Fk = Minimal elements of S \
⋃

i<k

Fi.

∗The research described in this paper was partially supported by NSF grants DMS-1500829 and DMS-
0914567. Part of this work was completed while the author was supported by a Rackham Predoctoral Fellow-
ship.

†Department of Mathematics, University of California, Berkeley. (jcalder@berkeley.edu)

1

http://arxiv.org/abs/1508.01557v1


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) i.i.d. samples
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(b) N = 104 samples
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(c) N = 106 samples

Figure 1: A simulation illustrating that (1.1) is the continuum limit of nondominated sorting.
The distribution of X1, . . . ,XN is depicted in (a). In (b) we show 25 of the nondominated
layers obtained by sorting N = 104 i.i.d. samples, and in (c) we compare the layers for N = 106

samples against the level sets of the viscosity solution of (1.1).

The process of sorting the set S into Pareto fronts, or nondominated layers, is called non-
dominated sorting, and is widely used in multi-objective optimization (see [5,9] and references
therein), with recent applications to machine learning [14–16]. It turns out that nondominated
sorting is equivalent to finding the longest chain in a partially ordered set, which has a long
history in probability and combinatorics [3, 11–13, 17, 20, 21]. It was shown in [5] that the
Pareto fronts converge almost surely in the limit as N → ∞ to the level sets of the unique
nondecreasing1 viscosity solution of (1.1). Figure 1 gives an illustration of this continuum
limit.

In [6], a fast algorithm called PDE-based ranking was proposed for approximate nondomi-
nated sorting of large datasets. The basic idea is to estimate the density f from a (relatively
small) subset of X1, . . . ,XN , and then use the numerical solution of the Hamilton-Jacobi equa-
tion (1.1) as an approximation of nondominated sorting. It was shown in [6] that PDE-based
ranking is substantially faster than nondominated sorting in relatively low dimensions, while
maintaining high levels of sorting accuracy. The numerical scheme for (1.1) used in [6] is based
on backward finite differences and can be solved very efficiently in a single pass. Due to the
fact that information flows along coordinate axes in the definition of nondominated sorting,
this scheme is upwind (or monotone), and convergence of the scheme was established in [6].

Although the scheme used in [6] is simple and efficient, it suffers from poor accuracy, with

formal rates of convergence on the order of O(h
1

n ) for a grid with spacing h > 0 in dimension
n. In this paper, we propose two new and highly efficient finite difference schemes for solving
(1.1). Both schemes have a formal accuracy of O(h) when the solution is smooth, and we prove
the usual O(

√
h) rates in the context of non-smooth viscosity solutions. These schemes can

be used to increase the accuracy of PDE-based ranking [6] without increasing computational
complexity. Alternatively, with these highly accurate schemes we can afford to use a coarser
grid resolution, and thus we can reduce the computational complexity of PDE-based ranking
while maintaining high accuracy. This is particularly important in applications of nondom-
inated sorting [9, 14, 16], which will benefit from highly accurate and efficient algorithms for
sorting massive datasets. We detail the new schemes and our main results in the next section.

1We say that u : Ω ⊆ R
n
→ R is nondecreasing if xi 7→ u(x) is nondecreasing for all i.
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1.1 Main results

We pose the Hamilton-Jacobi equation (1.1) on a compact domain as follows:

(ux1
)+ · · · (uxn)+ = f in (0, 1]n

u = 0 on Γ,

}
(P1)

where Γ := ∂[0, 1]n \ (0, 1]n and a+ := max(a, 0). Notice we have modified (1.1) by taking the
positive parts of the partial derivatives. This is necessary to obtain existence of a viscosity
solution of (P1), and is a well-known issue with viscosity solutions on boundaries of domains
(see [7]). We elaborate on this briefly in Section 2. We should mention that there is no loss
of generality in considering the domain [0, 1]n in (P1). Indeed, we can make a simple scaling
argument to transform the domain of (P1) into

∏n
i=1[0, xi] for any x ∈ R

n
+.

Let h > 0, Zh = {hk : k ∈ Z}, and Z
n
h = (Zh)

n. For Ω ⊆ R
n set Ωh = Ω ∩ Z

n
h. We recall

the numerical scheme for (P1) from [6]:

(D−
1 uh(x))+ · · · (D−

n uh(x))+ = f(x) if x ∈ (0, 1]nh

uh(x) = 0 if x ∈ Γh,

}
(S1)

where uh : [0, 1]nh → R is the numerical solution and

D±
i uh(x) = ±uh(x± hei)− uh(x)

h
.

The solution uh of (S1) can be solved efficiently in a single pass, which is reminiscent of the fast
marching [18] and fast sweeping [22] algorithms. In dimension n = 2, the scheme is quadratic
and can be solved in closed form

uh(x) =
uh(x− he1) + uh(x− he2)

2
+

1

2

√
(uh(x− he1)− uh(x− he2))2 + 4h2f(x)2. (1.2)

In dimensions n ≥ 3, the scheme can be solved via any iteration method, such as a bisection
search. Convergence of (S1) to the viscosity solution of (P1) was established in [6].

While (S1) is optimal in terms of computational complexity on a fixed grid, its accuracy is

at best O(h
1

n ). To see this, consider the special case of f ≡ 1 and u(x) = n(x1 · · · xn)
1

n . The
solution u is smooth on (0, 1]n, and has a gradient singularity on the boundary Γ. We can use
the comparison principle [6] for (P1) to show that in general

n(x1 · · · xn)
1

n inf
[0,1]n

f
1

n ≤ u(x) ≤ n(x1 · · · xn)
1

n sup
[0,1]n

f
1

n .

Therefore, the gradient singularity on Γ is typical for solutions of (P1) whenever inf [0,1]n f > 0.

Let ϕ(x) = Cn(x1 · · · xn)
1

n . By the concavity of ϕ

D−
i ϕ(x) ≥ ϕxi

(x) = C(x1 · · · xn)
1

nx−1
i .

On the other hand, if xi = h then

D−
i ϕ(x) =

ϕ(x)

h
= Cn(x1 · · · xn)

1

nx−1
i .

3



Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−
1 ϕ(x) · · ·D−

n ϕ(x) ≥ nCn.

Setting C = n−
1

n and invoking the comparison principle for (S1) yields

uh(x) ≤ ϕ(x) = n1−
1

n (x1 · · · xn)
1

n whenever xi = h for some i.

Letting x = (h, 1, . . . , 1) we find that

uh(x) ≤ n1−
1

nh
1

n = u(x)− n(1− n−
1

n )h
1

n .

Therefore, the scheme (S1) makes an error on the order of O(h
1

n ) in the immediate vicinity of
the boundary Γ. Since u is generally not smooth, the best theoretical rate that one can prove in
the context of viscosity solutions is typically strictly worse than the formal rate (see [8,10,19]).

In Section 5, we show numerical results indicating that the ℓ∞ convergence rate of O(h
1

n ) is
typically observed in practice.

Since the slow convergence rate is caused by a singularity in the gradient of u on Γ, it is
natural to look for a transformation of u that removes this singularity. With this in mind,
we set v = un/nn where u is the nondecreasing viscosity solution of (P1). When f ≡ 1 we
have v(x) = x1 · · · xn, which is Lipschitz continuous (in fact smooth) on [0, 1]n. In general, we

prove in Lemma 4.10 that v ∈ C0,1([0, 1]n) whenever f
1

n ∈ C0,1([0, 1]n). Furthermore, v is a
viscosity solution of

(vx1
)+ · · · (vxn)+ = vn−1f in (0, 1]n

v = 0 on Γ.

}
(P2)

Since v is Lipschitz continuous, it is reasonable to suspect that a numerical scheme for (P2)
would have a better convergence rate than (S1). We therefore propose the following finite
difference scheme for (P2):

(D−
1 vh(x))+ · · · (D−

n vh(x))+ = vh(x)
n−1f(x) if x ∈ (0, 1]nh

vh(x) = 0 if x ∈ Γh,

}
(S2)

where vh : [0, 1]nh → R. We take vh(x) to be the largest solution of (S2) at each x ∈ (0, 1]nh . It is
interesting to note that when f is constant, the solution of the scheme (S2) is vh(x) = cx1 · · · xn,
which is the exact solution of (P2).

The scheme can be solved efficiently in a single pass, similar to (S1), and in dimension
n = 2 we have the closed form expression

vh(x) =
A+ h2f(x)

2
+

1

2

√
B2 + 2h2f(x)A+ h4f(x)2, (1.3)

where
A = vh(x− he1) + vh(x− he2) and B = vh(x− he1)− vh(x− he2).

In Theorem 3.6, we prove convergence of (S2) when f is continuous and nonnegative. Our
main result is the following convergence rate.

4



Theorem 1.1. Suppose f ∈ C0,1([0, 1]n) and f > 0. Let vh be the solution of (S2) and let u
be the nondecreasing viscosity solution of (P1). Then

|nnvh(x)− u(x)n| ≤ C
√
h for all x ∈ [0, 1]nh , (1.4)

and
|nvh(x)

1

n − u(x)| ≤ Cδ1−n
√
h for all x ∈ [δ, 1]nh , (1.5)

where δ > 0 and C = C
(
n, [f ]1;[0,1]n , inf [0,1]n f

)
.

Notice that (P2) has a zeroth order term with the wrong sign for comparison principle
arguments to hold. We can see this by observing that the method of vanishing viscosity takes
the form

vx1
· · · vxn − ε∆v = vn−1f.

Since the standard proof of convergence rates for numerical approximations to viscosity so-
lutions is based on the proof of the comparison principle [8, 10, 19], we cannot directly apply
these techniques to (S2).

Our proof of Theorem 1.1 passes through an auxiliary problem, which actually suggests
another numerical scheme for solving (P1). Based on our observation that u(x) = n(x1 · · · xn)

1

n

is the viscosity solution of (P1) corresponding to f ≡ 1, it is natural in more general settings
to make the ansatz

u(x) = n(x1 · · · xn)
1

nw(x), (1.6)

for some function w : [0, 1]n → [0,∞). If this ansatz is correct, then w would be a viscosity
solution of

n∏

i=1

(w + nxiwxi
)+ = f on (0, 1]n. (P3)

It turns out that (P3) is well-posed within the class of bounded viscosity solutions without
imposing a boundary condition. The boundary condition is actually encoded into the PDE
due to the fact that the term nxiwxi

vanishes on Γ ∩ {xi = 0}. This suggests, for example,

that we should expect w(0) = f(0)
1

n . Due to the degeneracy of the terms nxiwxi
, there are

in general infinitely many unbounded viscosity solutions of (P3). We characterize w from
(1.6) as the maximal bounded viscosity solution of (P3), and we show in Lemma 4.8 that

w ∈ C0,1([0, 1]n) whenever f
1

n ∈ C0,1([0, 1]n).
We propose the following numerical scheme for (P3):

n∏

i=1

(
wh(x) + nxiD

−
i wh(x)

)
+
= f(x) for all x ∈ [0, 1]nh , (S3)

where wh : [0, 1]nh → [0,∞). Here, we take wh(x) to be the largest solution of (S3) at each
x ∈ [0, 1]nh . We note that for x ∈ [0, 1]nh such that xi = 0, the quantity D−

i wh(x) is undefined.
Since this term appears in the form nxiD

−
i wh(x), its value is not used in the scheme (S3).

It is interesting to note that when f is constant, the scheme (S3) gives the exact solution of
(P3).

This scheme can be solved efficiently in a single pass, and in dimension n = 2 the scheme
can be solved in closed form

wh(x) = C +
√
D2 + (2x1 + h)(2x2 + h)h2f(x), (1.7)

5



where
C = x1(2x2 + h)wh(x− he1) + x2(2x1 + h)wh(x− he2),

and
D = x1(2x2 + h)wh(x− he1)− x2(2x1 + h)wh(x− he2).

Since the zeroth order term in (P3) has the correct sign, we can use a modification of the
standard convergence proof to establish the following convergence rate.

Theorem 1.2. Suppose that f ∈ C0,1([0, 1]n) and f > 0. Let wh be the solution of (S3), and
let w be the maximal bounded viscosity solution of (P3). Then

|w(x)− wh(x)| ≤ C
√
h for all x ∈ [0, 1]nh , (1.8)

where C = C
(
n, [f ]1;[0,1]n , inf [0,1]n f

)
.

Our proof of Theorem 1.1 proceeds by first showing (in Lemma 4.13) that

|x1 . . . xnwh(x)
n − vh(x)| ≤ Ch,

and then invoking Theorem 1.2.
Although both (S2) and (S3) have the same provable convergence rates, our numerical re-

sults presented in Section 5 suggest that in general (S2) has a better experimental convergence
rate than (S3). This can be explained by observing that u can only have gradient singularities
when transitioning from zero to a positive value. The transformation v = un/nn regularizes
these gradient singularities anywhere in the domain [0, 1]n, and not just on the boundary Γ.

On the other hand, the transformation w(x) = n−1(x1 · · · xn)−
1

nu(x) is designed only to cap-
ture singularities on the boundary Γ. In Section 5, we give an example of a discontinuous
function f for which (S2) exhibits a better convergence rate than (S3) for the reason outlined
above.

This paper is organized as follows. In Section 2, we prove comparison principles for viscosity
solutions of (P2) and (P3). In Section 3, we use the Barles-Souganidis framework [2] to prove
convergence of the schemes (S2) and (S3) under the assumption that f is continuous and
nonnegative. In Section 4 we prove Theorems 1.1 and 1.2 establishing rates of convergence for
(S2) and (S3) when f is positive and Lipschitz. The proofs of the convergence rates require
Lipschitz estimates for the viscosity solutions of (P2) and (P3). These are obtained in Section
4.2.1. In Section 5, we show the results of numerical simulations comparing all three schemes.

2 Some comparison principles

We first prove comparison principles for (P1)–(P3) that will be utilized later in the convergence
proofs. Let us first briefly comment on the differences between (P1) and (1.1). As we mentioned
in Section 1.1, it is necessary to modify (1.1) by taking the positive parts of ux1

, . . . , uxn when
posing the PDE on compact domains. To see why this is necessary, consider (P1) with f ≡ 1
in dimension n = 2 without this modification:

ux1
ux2

= 1 in (0, 1]2

u = 0 on Γ.

}
(2.1)

6



This Hamilton-Jacobi equation of course has a classical solution u(x) = 2
√
x1x2 that is smooth

on (0, 1]2. However, u is not a viscosity solution of (2.1). To see this, let ϕ(x) = −t(x1 + x2).
Then u− ϕ has a local maximum at x = (1, 1) relative to (0, 1]2 for every t > 0. Since

ϕx1
(1, 1)ϕx2

(1, 1) = t2 > f(1, 1)

for t >
√
f(1, 1), the viscosity subsolution property fails to hold at x = (1, 1). This is a

well-known issue with viscosity solutions on boundaries of domains (see [7]). Notice, however,
that

(ϕx1
(1, 1))+(ϕx2

(1, 1))+ = 0 ≤ f(1, 1) for all t > 0.

Taking the positive parts of ux1
, . . . , uxn in (1.1) gives the PDE a useful monotonicity

property that we will exploit in this paper. Since it is useful to abstract this property, we
make the following definition.

Definition 2.1. Let s < 1. We say H : (s, 1]n × R × R
n → R is directed if for all (x, z) ∈

(s, 1]n × R

p 7→ H(x, z, p) is nondecreasing. (2.2)

If H is directed, it is simple to construct a monotone (or upwind) numerical scheme using
backward difference quotients. Indeed, let us consider the scheme

H(x, uh(x),D
−uh(x)) = 0 in (s, 1]nh, (2.3)

where uh : [s, 1]nh → R and

D−uh(x) = (D−
1 uh(x), . . . ,D

−
n uh(x)).

To see that (2.3) is monotone, suppose that u(x0) = v(x0) and u(x) ≥ v(x) for x ∈ [s, 1]nh.
Then D−

i u(x0) ≤ D−
i v(x0) for all i ∈ {1, . . . , n}, and since H is directed

H(x, u(x),D−u(x)) ≤ H(x, v(x),D−v(x)).

The following Theorem is a direct consequence of this monotonicity and [2, Theorem 2.1].

Theorem 2.2. Suppose that H is continuous and directed. Let {uh}h>0 be solutions of (2.3)
satisfying

sup
h>0

x∈[s,1]n
h

|uh(x)| <∞.

Then
u(x) = lim sup

h→0
y→x

uh(y) (resp. u(x) = lim inf
h→0
y→x

uh(y))

is a viscosity subsolution (resp. supersolution) of H = 0 in (s, 1]n.

When f ∈ C([0,∞)n), there is a unique nondecreasing viscosity solution u of (1.1) [4]. We
now show that the restriction of u to [0, 1]n is the unique nondecreasing viscosity solution of
(P1). This establishes the equivalence of (1.1) and (P1).
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Lemma 2.3. Suppose f ∈ C([0, 1]n) is nonnegative. Let u ∈ USC([0, 1]n) be a viscosity
subsolution of (P1), and let v ∈ LSC([0, 1]n) be a nondecreasing viscosity supersolution of
(P1). Then u ≤ v on [0, 1]n.

Proof. Let λ > 0 and set vλ = v+ λ(x1 + · · ·+ xn). Since v is nondecreasing, vλ is a viscosity
solution of

(vλ,x1
)+ · · · (vλ,xn

)+ ≥ f + λn on (0, 1]n.

The standard comparison argument based on doubling the variables (see [1, 7]) shows that
u ≤ vλ on [0, 1]n. Sending λ→ 0 completes the proof.

Lemma 2.4. Let f ∈ C([0,∞)n) be nonnegative and let u be the nondecreasing viscosity
solution of (1.1). Then the restriction of u to [0, 1]n is the nondecreasing viscosity solution of
(P1).

Proof. By Lemma [6, Lemma 3.3], the numerical solutions uh of (S1) satisfy the estimate

|uh(x)− uh(y)| ≤ C(|x− y| 1n + h
1

n )

for all x, y ∈ [0, 1]nh , where C = C(n, sup[0,1]n f). Combined with Theorem 2.2, this shows
that uh converges uniformly on [0, 1]n to the unique nondecreasing viscosity solution of (P1).
By [6, Theorem 3.4], we also have uh → u uniformly on [0, 1]n, which completes the proof.

2.1 The HJ-equation (P2)

In this section, we establish a comparison principle for (P2). When f ∈ C([0, 1]n), the function
v = un/nn is a nondecreasing viscosity solution of (P2) (see Lemma 2.5). We will call v =
un/nn the maximal viscosity solution of (P2) (see Lemma 2.6).

Since (P2) has a zeroth order term of the wrong sign for comparison to hold directly, we
find that (P2) actually has infinitely many nondecreasing viscosity solutions.

Lemma 2.5. Let f ∈ C([0, 1]n) be nonnegative, let y ∈ [0, 1]n, and let u be the nondecreasing
viscosity solution of

(ux1
)+ · · · (uxn)+ = f in

n∏

i=1

(yi, 1]

u = 0 on
n∏

i=1

[yi, 1] \
n∏

i=1

(yi, 1],





(2.4)

and extend u to [0, 1]n by setting u(x) = 0 for x ∈ [0, 1]n \∏n
i=1[yi, 1]. Then v = un/nn is a

nondecreasing viscosity solution of (P2).

Proof. Let x0 ∈ (0, 1]n and let ϕ ∈ C1([0, 1]n) such that v − ϕ has a local maximum at x0.
We also assume that ϕ(x0) = v(x0). If v(x0) = 0 then since u is nondecreasing, we see that
v(x) = 0 for all x that are coordinatewise less than x0. It follows that ϕxi

(x0) ≤ 0 for all i,
and the subsolution property is trivially satisfied. If v(x0) > 0, then u(x0) > 0 and therefore

x0 ∈
∏n

i=1(yi, 1]. Setting ψ(x) = nϕ(x)
1

n we find that u − ψ has a local maximum at x0.
Therefore

(ψx1
(x0))+ · · · (ψxn(x0))+ ≤ f(x0).

8



Since ϕ(x0) = v(x0) > 0, this becomes

(ϕx1
(x0))+ · · · (ϕxn(x0))+ ≤ v(x0)

n−1f(x0),

which verifies the subsolution property. The proof of the supersolution property is similar.

The lack of uniqueness of nondecreasing viscosity solutions of (P2) indicates that we cannot
expect a comparison principle to hold for arbitrary sub- and supersolutions of (P2). However,
we show in the following lemma that every subsolution is bounded above by v = un/nn. This
turns out to be sufficient to prove convergence of (S2).

Lemma 2.6. Let f ∈ C([0, 1]n) be nonnegative and let v ∈ USC([0, 1]n) be a nonnegative
viscosity subsolution of (P2). Then v ≤ un/nn on [0, 1]n, where u is the nondecreasing viscosity
solution of (P1).

Proof. We define u1 = nv
1

n . Let x0 ∈ (0, 1]n and ϕ ∈ C1([0, 1]n) such that u1 − ϕ has a local
maximum at x0 and ϕ(x0) = u1(x0). Letting ψ(x) = ϕ(x)n/nn, we see that v − ψ has a local
maximum at x0 and therefore

(ψx1
(x0))+ · · · (ψxn(x0))+ ≤ v(x0)

n−1f(x0).

Since Dψ(x0) = v(x0)
n−1

n Dϕ(x0), we have

v(x0)
n−1(ϕx1

(x0))+ · · · (ϕxn(x0))+ ≤ v(x0)
n−1f(x0).

If v(x0) > 0 then
(ϕx1

(x0))+ · · · (ϕxn(x0))+ ≤ f(x0). (2.5)

If v(x0) = 0, then since v is nonnegative, ϕxi
(x0) ≤ 0 for all i, which verifies (2.5). By Lemma

2.3, u1 ≤ u, where u is the unique nondecreasing viscosity solution of (P1).

2.2 The HJ-equation (P3)

Before establishing a comparison principle for (P3), let us comment on the properties of
solutions of (P3). Let f ∈ C([0, 1]n) be nonnegative and let u be the nondecreasing viscosity
solution of (P1). By Lemma 2.3 we have

0 ≤ u(x) ≤ n(x1 · · · xn)
1

n sup
[0,1]n

f
1

n for all x ∈ (0, 1]n.

Setting w(x) = n−1(x1 · · · xn)−
1

nu(x) ∈ C((0, 1]n) we have

0 ≤ w(x) ≤ sup
[0,1]n

f
1

n for all x ∈ (0, 1]n.

We also have that w is a viscosity solution of (P3) that satisfies

w + nxiwxi
≥ 0 on (0, 1]n (2.6)

in the viscosity sense for all i. To see this, let x0 ∈ (0, 1]n and ϕ ∈ C1((0, 1]n) such that
w − ϕ has a local minimum at x0. We can also assume ϕ(x0) = w(x0), so that w ≥ ϕ in a

9



neighborhood of x0. Setting ψ(x) = n(x1 · · · xn)
1

nϕ(x) it follows that u ≥ ψ in a neighborhood
of x0 and u(x0) = ψ(x0). Therefore u−ψ has a local minimum at x0. Since u is nondecreasing,
ϕxi

(x0) ≥ 0 for all i and
ψx1

(x0) · · ·ψxn(x0) ≥ f(x0).

A simple computation shows that

n∏

i=1

(w(x0) + nxiϕxi
(x0)) ≥ f(x0),

and
w(x0) + nxiϕxi

(x0) ≥ 0 for all i.

The subsolution property is verified similarly. We will call w the maximal bounded viscosity
solution of (P3).

Notice the boundary condition u = 0 on Γ is only used to show that w is bounded. Indeed,
it is clear that the argument above holds when u is any viscosity solution of

(ux1
)+ · · · (uxn)+ = f in (0, 1]n.

This yields an infinite number of unbounded viscosity solutions of (P3). For instance, when
f ≡ 1 the function

w(x) =
n∏

i=1

(1 + Cx−1
i )

1

n

for any C ≥ 0 is a viscosity solution of (P3). Taking C = 0 gives the bounded viscosity
solution of interest from (1.6). The following theorem characterizes this solution as the unique
bounded viscosity solution of (P3) satisfying (2.6).

Theorem 2.7. Assume that f ∈ C([0, 1]n) is nonnegative. Let w1 ∈ USC((0, 1]n) and w2 ∈
LSC((0, 1]n) be bounded viscosity sub- and supersolutions of (P3), respectively, and suppose
that w2 satisfies (2.6) in the viscosity sense for all i. Then w1 ≤ w2 on (0, 1]n.

Proof. For i = 1, 2, we define

ui(x) =

{
n(x1 · · · xn)

1

nwi(x), if x ∈ (0, 1]n

0, if x ∈ Γ.

Since w1 ∈ USC((0, 1]n) is bounded, u1 ∈ USC([0, 1]n). Similarly, u2 ∈ LSC([0, 1]n).
We first show that u2 is a nondecreasing viscosity supersolution of (P1). Let y ∈ (0, 1]n

and ϕ ∈ C1((0, 1]n) such that u2 − ϕ has a local minimum at y and u2(y) = ϕ(y). We define

ψ(x) =
ϕ(x)

n(x1 · · · xn)
1

n

for x ∈ (0, 1]n.

Then it follows that w2 − ψ has a local minimum at y. Since w2 is a viscosity supersolution
of (P3) we have

n∏

i=1

(w2(y) + nyiψxi
(y))+ ≥ f(y). (2.7)
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Since

ψxi
(y) =

ϕxi
(y)

n(y1 · · · yn)
1

n

− w2(y)

nyi
,

and w2 satisfies (2.6) we have

0 ≤ w2(y) + nyiψxi
(y) =

yiϕxi
(y)

(y1 · · · yn)
1

n

.

Therefore ϕxi
(y) ≥ 0 for all i and

ϕx1
(y) · · ·ϕxn(y) ≥ f(y).

This establishes that u2 is a nondecreasing (e.g., see [1, Lemma 5.17]) viscosity supersolution
of (P1).

We can similarly show that u1 is a viscosity subsolution of (P1). The proof is completed
by invoking Lemma 2.3.

3 Convergence results for continuous f

In this section we prove convergence of the schemes (S2) and (S3) under the assumption that
f is continuous and nonnegative.

3.1 The scheme (S2)

Let h > 0 and x ∈ (0, 1]nh . Given values for vh(x − he1), · · · , vh(x − hen), we define vh(x) to
be the largest solution of (S2). If we let ai = v(x− hei) for i = 1, . . . , n and b = hnf(x), then
this is equivalent to finding the largest solution t of

F (a1, . . . , an, b, t) :=

n∏

i=1

(t− ai)+ − btn−1 = 0. (3.1)

We define
S(a1, . . . , an, b) = sup

{
t ∈ R : F (a1, . . . , an, b, t) = 0

}
.

Since t = 0 is always a solution of (3.1), it is easy to see that S(x) is a nonnegative real number
for all x ∈ [0,∞)n+1. With these definitions, the solution vh of (S2) satisfies vh(x) = 0 for
x ∈ Γ and

vh(x) = S(vh(x− he1), . . . , vh(x− hen), h
nf(x)) for all x ∈ (0, 1]nh . (3.2)

We shall refer to vh as the maximal solution of (S2).
We now establish some important properties of S.

Lemma 3.1. Let x ∈ [0,∞)n+1. Then

(i) S(x) ≥ max{x1, . . . , xn} and S(x) = max{x1, . . . , xn} if and only if xn+1 = 0,

(ii) F (x, t) > 0 for all t > S(x),
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(iii) If xn+1 > 0 then F (x, t) < 0 whenever 0 < t < S(x), and

(iv) S : [0,∞)n → [0,∞) is nondecreasing in all variables.

Proof. By symmetry, we may assume that x1 ≤ x2 ≤ · · · ≤ xn.
For (i), we simply note that F (x, xn) ≤ 0 and limt→∞ F (x, t) = ∞. Therefore there exists

t ≥ xn such that F (x, t) = 0. It follows that S(x) ≥ t ≥ xn. If xn+1 = 0, then clearly
S(x) = xn. Conversely, suppose that xn+1 > 0. If xn = 0 then S(x) = xn+1 > 0 = xn. If
xn > 0, then F (x, xn) < 0 and hence S(x) > xn.

For (ii) If xn+1 = 0, then S(x) = xn, and it is clear that F (x, t) > 0 for all t > S(x). If
xn+1 > 0, then by (i), S(x) > xn and F (x, S(x)) = 0. For any t > xn such that F (x, t) = 0
we have

Ft(x, t) =

n∑

j=1

∏

i 6=j

(t− xi)− (n− 1)xn+1t
n−2

= xn+1t
n−1

n∑

j=1

1

t− xj
− (n− 1)xn+1t

n−2

≥ nxn+1t
n−2 − (n − 1)xn+1t

n−2 = xn+1t
n−2 > 0. (3.3)

It follows that F (x, t) > 0 for all t > S(x). This establishes (ii).
For (iii), suppose first that xn = 0. Then F (x, t) = tn − xn+1t

n−1 and S(x) = xn+1, from
which (iii) immediately follows. If xn > 0, then since xn+1 > 0 we have F (x, t) < 0 for all
0 < t ≤ xn. Therefore there exists ε > 0 such that F (x, t) < 0 for 0 < t < xn + ε. Define

τ = sup
{
t ∈ R : F (x, s) < 0 for all s ∈ (0, t)

}
.

Clearly F (x, τ) = 0 and τ > xn + ε. For any t ≥ τ satisfying F (x, t) = 0, we have by (3.3)
that Ft(x, t) > 0. It follows that τ = S(x), which establishes (iii).

For (iv) we set

U =
{
x ∈ [0,∞)n+1 : max{x1, . . . , xn} > 0 and xn+1 > 0

}
.

By (i), S(x) > xn for every x ∈ U . Therefore Ft(x, S(x)) > 0 for all x ∈ U , and it follows
from the implicit function theorem that the restriction of S to U is smooth.

Since F (x, S(x)) = 0 we have

n∑

j=1

log(S(x)− xj) = log(xn+1) + (n− 1) log(S(x)). (3.4)

Differentiating (3.4) in xi for i ∈ {1, . . . , n} we obtain



n∑

j=1

1

S(x)− xj
− n− 1

S(x)


Sxi

(x) =
1

S(x)− xi
.

Since S(x) > xj for all j ∈ {1, . . . , n}, we have

n∑

j=1

1

S(x)− xj
≥

n∑

j=1

1

S(x)
=

n

S(x)
.
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It follows that Sxi
(x) > 0. Differentiating (3.4) in xn+1 we have




n∑

j=1

1

S(x)− xj
− n− 1

S(x)


Sxn+1

(x) =
1

xn+1
.

As before, it follows that Sxn+1
(x) > 0. Therefore S is strictly increasing on U .

If xn+1 = 0, then S(x) = max{x1, . . . , xn} is nondecreasing. If xn = 0, then S(x) = xn+1

is again nondecreasing. The continuity of S establishes (iv).

Remark 3.2. In the proof of Lemma 3.1 (iv), we can use the inequality

n∑

j=1

1

S(x)− xj
≥ 1

S(x)− xi
+
∑

j 6=i

1

S(x)
=

1

S(x)− xi
+
n− 1

S(x)

to find that Sxi
(x) ≤ 1 for all x ∈ U and i ∈ {1, . . . , n}. Since S(0, . . . , 0, xn+1) = xn+1, we

have the bound

S(x) ≤
n+1∑

i=1

xi. (3.5)

Using the properties of S from Lemma 3.1 we can establish a comparison principle for the
scheme (S2).

Theorem 3.3. Let h > 0 and suppose f ≥ 0. Let v1 be a subsolution of (S2) and let v2 be a
supersolution of (S2) satisfying

v2(x) ≥ S(v2(x− he1), . . . , v2(x− hen), h
nf(x)) for all x ∈ (0, 1]nh. (3.6)

Then v1 ≤ v2 on [0, 1]nh .

Proof. We will prove the result by induction. We have v1(x) ≤ v2(x) for x ∈ Γh by definition.
Now let x ∈ (0, 1]nh and suppose that

v1(x− hei) ≤ v2(x− hei) for i = 1, . . . , n. (3.7)

Since v1 is a subsolution of (S2) we have

F (v1(x− he1), . . . , v1(x− hen), h
nf(x), v1(x)) ≤ 0.

It follows from Lemma 3.1 (ii) that

v1(x) ≤ S(v1(x− he1), . . . , v1(x− hen), h
nf(x)). (3.8)

Recalling (3.6) and Lemma 3.1 (iv) we have

v1(x) ≤ S(v1(x− he1), . . . , v1(x− hen), h
nf(x))

≤ S(v2(x− he1), . . . , v2(x− hen), h
nf(x)) ≤ v2(x).

The proof is completed by induction.
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Remark 3.4. If f is positive and v is a supersolution of (S2) that is positive on (0, 1]nh , then it
follows from Lemma 3.1 (iii) that

v(x) ≥ S(v(x− he1), . . . , v(x− hen), h
nf(x)) for all x ∈ (0, 1]nh . (3.9)

Remark 3.5. Notice that

v(x) = (x1 · · · xn) sup
[0,1]n

f and v(x) = (x1 · · · xn) inf
[0,1]n

f

are super- and subsolutions of (S2), respectively. By Theorem 3.3 and Remark 3.4

(x1 · · · xn) inf
[0,1]n

f ≤ vh(x) ≤ (x1 · · · xn) sup
[0,1]n

f for all x ∈ [0, 1]nh . (3.10)

As a consequence, if f ≡ C ≥ 0 then vh(x) = Cx1 · · · xn, which is exactly equal to the maximal
viscosity solution of (P2).

We can now establish convergence of the scheme (S2).

Theorem 3.6. Let f ∈ C([0, 1]n) be nonnegative, and for each h > 0 let vh denote the maximal
solution of (S2). Then vh → v uniformly on [0, 1]n as h→ 0, where v is the maximal viscosity
solution of (P2).

Proof. Let
v(x) = lim sup

h→0
y→x

vh(y) and v(x) = lim inf
h→0
y→x

vh(y).

By Theorem 2.2 and Remark 3.5, v ∈ USC([0, 1]n) is a viscosity subsolution of (P2). By
Lemma 2.6, v ≤ v.

Let uh be the solution of (S1), and let ψh(x) = uh(x)
n/nn. Since t 7→ tn is convex for

t > 0 and uh is nondecreasing, we have

D−
i ψh(x) =

uh(x)
n − uh(x− hei)

n

nnh
≤ uh(x)

n−1

nn−1
D−

i uh(x).

Therefore
D−

1 ψh(x) · · ·D−
n ψh(x) ≤ ψh(x)

n−1f(x) for all x ∈ (0, 1]nh .

By Theorem 3.3, ψh ≤ vh on [0, 1]nh . As in the proof of Lemma 2.4, we have that ψh → v
uniformly on [0, 1]n as h→ 0. It follows that v ≥ v, which completes the proof.

Remark 3.7. Notice in the proof of Theorem 3.6 we showed that unh ≤ nnvh, where uh is the
numerical solution of (S1), and vh is the solution of (S2). Under the assumptions of Theorem
1.1, this gives a one-sided convergence rate for (S1) of the form

unh − un ≤ C
√
h, (3.11)

where u is the nondecreasing viscosity solution of (P1). When u is concave, we can actually
prove that uh ≤ u (see [6, Lemma 3.5]).
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3.2 The scheme (S3)

Recall that we defined the solution wh : [0, 1]nh → R of (S3) inductively by taking wh(x) to be
the largest solution of the polynomial equation defining (S3) at each x. It is easy to see that

wh(x) + nxiD
−
i wh(x) ≥ 0 for all x ∈ [0, 1]nh and i ∈ {1, . . . , n}. (3.12)

The following lemma shows that (S3) admits a comparison principle whenever the supersolu-
tion satisfies (3.12).

Lemma 3.8. Suppose f is nonnegative. Let w1 and w2 be sub- and supersolutions of (S3),
respectively, and suppose w2 satisfies (3.12). Then w1 ≤ w2 on [0, 1]nh.

Proof. Let x ∈ [0, 1]nh be a maximum of w1 − w2, and suppose to the contrary that w1(x) >
w2(x). Then we have

D−
i w1(x) ≥ D−

i w2(x) for all i such that xi 6= 0.

Recalling (3.12) we have

f(x) ≤
n∏

i=1

(w2(x) + nxiD
−
i w2(x)) <

n∏

i=1

(w1(x) + nxiD
−
i w1(x)) ≤ f(x),

which is a contradiction.

We now prove convergence of (S3).

Theorem 3.9. Let f ∈ C([0, 1]n) be nonnegative, and for h > 0 let wh be the maximal
solution of (S3). Then wh → w uniformly on (0, 1]n as h → 0, where w is the maximal
bounded viscosity solution of (P3).

Proof. Let
w(x) = lim sup

h→0
y→x

wh(y) and w(x) = lim inf
h→0
y→x

wh(y).

We can use the comparison principle from Lemma 3.8 to show that

inf
[0,1]n

f
1

n ≤ wh ≤ sup
[0,1]n

f
1

n .

Therefore
inf
[0,1]n

f
1

n ≤ w ≤ w ≤ sup
[0,1]n

f
1

n .

By Theorem 2.2, w ∈ USC((0, 1]n) is a bounded viscosity subsolution of (P3) and w ∈
LSC((0, 1]n) is a bounded viscosity supersolution of (P3). Furthermore, since wh satisfies
(3.12) another application of Theorem 2.2 shows that w is a viscosity solution of (2.6) for all i.
By Theorem 2.7, w = w = w, where w is the maximal bounded viscosity solution of (P3).
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4 Rates of convergence for positive and Lipschitz f

In order to obtain a rate of convergence, it is necessary to show that the either the numerical
solution or the viscosity solution of the continuum equation is Lipschitz continuous up to
the boundary Γ. Since none of the Hamiltonians considered in this paper are coercive, the
standard textbook estimates [1] do not apply.

4.1 A Lipschitz estimate in dimension n = 2

In dimension n = 2, we can prove the required Lipschitz estimate for v directly by differen-
tiating (P2) and using a comparison principle. Let us briefly sketch the argument, which is
made rigorous at the level of the numerical scheme (S2) in Theorem 4.2.

Formally differentiating (P2) in the variable x1 we have

vx1x1
vx2

+ vx1
vx1x2

= vfx1
+ fvx1

.

Setting ψ = vx1
and noting that v(x) ≤ sup[0,1]2 f we have

ψx1
vx2

+ (ψx2
− f)ψ ≤ [f ]1;[0,1]2 sup

[0,1]2
f. (4.1)

Consider using a comparison function of the form ψ(x) = C(1 + x2). Since ψx1
≡ 0, the first

term in (4.1) can be ignored. Furthermore, for C > sup[0,1]2 f , the sign of the zeroth order
term in (4.1) is positive, which suggests that a comparison principle should hold, allowing us
to show that vx1

= ψ ≤ C(1 + x2) for a possibly larger constant C > 0.
Of course, v is not in general smooth enough to use this argument directly, so we need to

regularize (P2). One obvious approach would be the method of vanishing viscosity. However,
there are some technical challenges with this approach, due to the sign of the zeroth order term
in (P2) and the (non-obvious) fact that for positive viscosity, vε can fail to be nondecreasing.
Our approach is to apply the argument above at the level of the numerical scheme (S2). Since
we showed convergence of (S2) in Theorem 3.6, a Lipschitz estimate on vh directly carries over
to the maximal viscosity solution v of (P2).

Heading in this direction, we now recall some basic properties of finite differences.

Proposition 4.1. For all k, j ∈ {1, . . . , n} we have

(i) D±
k D

±
j u = D±

j D
±
k u and D+

k D
−
j u = D−

j D
+
k u,

(ii) D±
k (uv)(x) = u(x)D±

k v(x) + v(x± hek)D
±
k u(x),

(iii) D±
k (uv) = uD±

k v + vD±
k u± hD±

k uD
±
k v,

We now give a preliminary regularity result for vh.

Theorem 4.2. Let n = 2, let f ∈ C0,1([0, 1]2) be nonnegative, and let vh be any nondecreasing
solution of (S2). Then for k = 1, 2 we have

0 ≤ D−
k vh(x) ≤ [f ]1;[0,1]2 + 3 sup

[0,1]2
f for all x ∈ (0, 1]2h. (4.2)
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Proof. Let us prove the result for k = 1; the case of k = 2 follows by symmetry. We extend vh
to a function on [−h, 1]2h by setting vh(x) = 0 for x ∈ [−h, 1]2h \ [0, 1]2h. With these definitions,
we have vh(x) = D−

i vh(x) = 0 for x ∈ Γh. Since vh is nondecreasing, we therefore have

D−
1 vh(x)D

−
2 vh(x) = vh(x)f(x) for all x ∈ [0, 1]2h.

We now apply the operator D−
1 to the equation above and use Proposition 4.1 (ii) to obtain

D−
1 vh(x)D

−
1 D

−
2 vh(x) +D−

1 D
−
1 vh(x)D

−
2 vh(x− he1) = vh(x)D

−
1 f(x) + f(x− hei)D

−
1 vh(x)

for all x ∈ (0, 1]2h. Setting ψ(x) = D−
1 vh(x) and using Proposition 4.1 (i) we have

ψ(x)D−
2 ψ(x) +D−

2 vh(x− he1)D
−
1 ψ(x) = vh(x)D

−
1 f(x) + f(x− hei)ψ(x).

Applying Theorem 3.3 and Remark 3.5

D−
2 vh(x− he1)D

−
1 ψ(x) + (D−

2 ψ(x)− f(x− hei))ψ(x) ≤ [f ]1;[0,1]2 sup
[0,1]2

f =:M (4.3)

for all x ∈ (0, 1]2h, and ψ(x) = 0 for x ∈ Γh. We can assume M > 0, otherwise vh(x) = cx1x2
and (4.2) is trivial.

Let ψ(x) =
(√

M + sup[0,1]2 f
)
(1 + x2) and note that since vh is nondecreasing we have

D−
2 vh(x− he1)D

−
1 ψ(x) + (D−

2 ψ(x)− f(x− hei))ψ(x) ≥M +
√
M sup

[0,1]2
f. (4.4)

We claim that ψ ≤ ψ. Assume by way of contradiction that max[0,1]2
h
(ψ − ψ) > 0. Since

ψ = 0 ≤ ψ on Γh, ϕ−ϕ must attain its positive maximum at some x ∈ (0, 1]2h. It follows that
D−

i ψ(x) ≥ D−
i ψ(x) for i = 1, 2 and ψ(x) > ψ(x). Since D−

2 ψ(x) − f(x − hei) > 0 and vh is
nondecreasing, we can combine (4.3) and (4.4) to find that

M +
√
M sup

[0,1]2
f ≤M,

which is a contradiction to the positivity of M . By Cauchy’s inequality

D−
i vh(x) = ψ(x) ≤

(
√
M + sup

[0,1]2
f

)
(1 + x2) ≤ [f ]1;[0,1]2 + 3 sup

[0,1]2
f,

for all x ∈ (0, 1]2h.

Since vh → v uniformly (Theorem 3.6), we can extend the Lipschitz estimate in Theorem
4.2 to (P2).

Corollary 4.3. Let n = 2, let f ∈ C0,1([0, 1]2) be nonnegative, and let v be the maximal
viscosity solution of (P2). Then there exists C > 0 such that

[v]1;[0,1]2 ≤ C‖f‖C0,1([0,1]n). (4.5)

The proof of Theorem 4.2 does not work in dimensions n ≥ 3 due to the additional non-
linearity of (P2), which increases with n. In Section 3.2 we study the auxiliary problem (S3),
which allows us to prove Lipschitz regularity of the maximal viscosity solution of (P2) in arbi-

trary dimension (see Lemma 4.10), provided the strictly stronger condition f
1

n ∈ C0,1([0, 1]n)
holds. We expect Theorem 4.2 to hold in dimensions n ≥ 3 under the natural condition
f ∈ C0,1([0, 1]n), but we currently do not know how to prove this.
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4.2 The scheme (S3)

In this section we prove Lipschitz regularity and rates of convergence for the scheme (S3).
This establishes one of our main results (Theorem 1.2). These results are used in Section 4.3
to prove similar rates of convergence for (S2).

Throughout this section we set

H(x, z, p) =

n∏

i=1

(z + nxipi)+,

for (x, z, p) ∈ R
n × R× R

n.

4.2.1 Lipschitz regularity

Let us first give a formal argument suggesting a Lipschitz estimate on the maximal bounded
viscosity solution w of (P3). Assuming w is smooth and f > 0, we can take the logarithm of
(P3) to obtain

n∑

j=1

log(w + nxjwxj
) = log(f)

Differentiating both sides in the variable xi and setting ϕ = wxi
we have

n∑

j=1

(1 + δi,j)ϕ + nxjϕxj

w + nxjwxj

=
fxi

f
,

where δi,j = 1 if i = j and δi,j = 0 if i 6= j. Notice that at a positive maximum of ϕ we have
ϕxj

= 0 for all j and hence

nf−
1

nϕ = nϕ

n∏

j=1

(w + nxjwxj
)−

1

n ≤
n∑

j=1

(1 + δi,j)ϕ

w + nxjwxj

=
fxi

f
,

where we employed the inequality of arithmetic and geometric means in the first inequality.
This suggests that

wxi
≤ sup

[0,1]n

1

n
f1−

1

n fxi
= sup

[0,1]n
∂xi

(f
1

n ). (4.6)

In Theorem 4.6 and Lemma 4.8, we make this argument rigorous by applying it to the
numerical scheme (S3). One obvious gap in the argument above is the existence of a positive
maximum for wxi

. Indeed, when w is any of the infinitely many unbounded viscosity solutions
of (P3), wxi

either has no maximum value, or no minimum value, on (0, 1]n. This is a
reflection of the fact that (S3) has no boundary condition. This issue is resolved by showing
(in Proposition 4.4) that the numerical solution wh can be extended by projection to a solution
of (S3) on the domain (−∞, 1]nh.

For x ∈ R
n, let us set

x+ = ((x1)+, . . . , (xn)+).
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Proposition 4.4. Suppose f is nonnegative, and let w be a sub- (resp. super-) solution of
(S3). Then w(x) := w(x+) is a sub- (resp. super-) solution of

H(x+, w(x),D
−w(x)) = f(x) for all x ∈ (−∞, 1]nh, (4.7)

where f(x) := f(x+).

Proof. We claim that

(xi)+D
−
i w(x) = (xi)+D

−
i w(x+) for all x ∈ (−∞, 1]nh, i ∈ {1, . . . , n}.

If xi ≤ 0 the result is trivial. Hence we may assume that xi ≥ h, so that (x−hei)+ = x+−hei.
Then

D−
i w(x) =

w(x+)− w((x− hei)+)

h
=
w(x+)− w(x+ − hei)

h
= D−

i w(x+),

which establishes the claim.
For x ∈ (−∞, 1]nh \ [0, 1]nh , we have x+ ∈ [0, 1]nh and

n∏

i=1

(
w(x) + n(xi)+D

−
i w(x)

)
+
=

n∏

i=1

(
w(x+) + n(xi)+D

−
i w(x+)

)
+
.

Since f(x) = f(x+), the result immediately follows.

We also note that we can extend the product rule for finite differences in Proposition 4.1
(iii) by induction as follows:

Lemma 4.5. For all k ∈ {1, . . . , n} and N ≥ 2 we have

D±
k (u1 · · · uN ) =

N∑

j=1

D±
k uj

∏

i 6=j

ui +

N∑

j=2

(±h)j−1
∑

|I|=j

∏

i∈I
D±

k ui
∏

i 6∈I
ui, (4.8)

where the final summation is over all I ⊆ {1, . . . , N} with |I| = j.

The proof of Lemma 4.5 is deferred to the appendix. We now establish a Lipschitz estimate
on the solution wh of (S2).

Theorem 4.6. Suppose that f ∈ C0,1([0, 1]n) is positive on [0, 1]n, and let wh be the maximal
solution of (S3). Then

inf
x∈Uk

1

n
f(x+ hek)

1

n
−1(D+

k f(x))− ≤ D+
k wh(x) ≤ sup

Uk

1

n
f

1

n
−1(D+

k f)+. (4.9)

for all x ∈ Uk := {x ∈ [0, 1]nh : xk ≤ 1− h}. In particular

sup
Uk

|D+
k wh| ≤

1

n
[f ]1;[0,1]n sup

[0,1]n
f

1

n
−1. (4.10)
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Proof. For notational convenience, we will write w in place of wh throughout the proof.
By Proposition (4.7), we can extend w and f to functions on (−∞, 1]nh by setting w(x) =

w(x+) and f(x) = f(x+), and we have

H(x+, w(x),D
−w(x)) = f(x) for all x ∈ (−∞, 1]nh. (4.11)

Let ϕ(x) = D+
k w(x) for all x ∈ (−∞, 1]nh with xk ≤ 1− h.

The proof is split into two steps.
1. We first show that

sup
Uk

D+
k w ≤ sup

Uk

1

n
f

1

n
−1(D+

k f)+. (4.12)

We may assume ϕ is positive somewhere, otherwise (4.12) trivially holds. For any x such that
xk ≤ −h, we have x+ = (x+ hek)+. This implies that ϕ(x) = 0. Likewise, whenever xk ≥ 0,
(x + hek)+ = x+ + hek and we have ϕ(x) = ϕ(x+). It follows that ϕ attains its positive
maximum value at some x0 ∈ Uk. Therefore

ϕ(x0) > 0 and D−
j ϕ(x0) ≥ 0 for all j ∈ {1, . . . , n}. (4.13)

Since f(x) > 0,

f(x) = H(x+, w(x),D
−w(x)) =

n∏

j=1

aj(x), (4.14)

where
aj(x) = w(x) + n(xj)+D

−
j w(x) > 0.

By Lemma 4.5

D+
k f(x) =

n∑

j=1

D+
k aj(x)

∏

i 6=j

ai(x) +

N∑

j=2

hj−1
∑

|I|=j

∏

i∈I
D+

k ai(x)
∏

i 6∈I
ai(x). (4.15)

Using Proposition 4.1 (ii) we have

D+
k aj(x) = D+

k w(x) + nδj,kD
−
j w(x+ hek) + nxjD

+
k D

−
j w(x),

for x ∈ [0, 1]nh . Invoking Proposition 4.1 (i) and noting that D−
k w(x + hek) = D+

k w(x), we
deduce

D+
k aj(x) = (1 + nδj,k)ϕ(x) + nxjD

−
j ϕ(x). (4.16)

Inserting (4.13) into (4.16) yields D+
k aj(x0) ≥ ϕ(x0) > 0 for all j. Combining this with (4.15)

and recalling that ai(x0) > 0 gives

D+
k f(x0) =

n∑

j=1

D+
k aj(x0)

∏

i 6=j

ai(x0) +
N∑

j=2

hj−1
∑

|I|=j

∏

i∈I
D+

k ai(x0)
∏

i 6∈I
ai(x0)

≥ ϕ(x0)
n∑

j=1

∏

i 6=j

ai(x0). (4.17)
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Using the inequality of geometric and arithmetic means yields

n∑

j=1

∏

i 6=j

ai(x0) ≥ n




n∏

j=1

∏

i 6=j

ai(x0)




1

n

= n

(
n∏

i=1

ai(x0)

)n−1

n

= nf(x0)
n−1

n . (4.18)

Combining (4.17) and (4.18) establishes (4.12).
2. We now show that

inf
Uk

D+
k w ≥ inf

x∈Uk

1

n
f(x+ hek)

1

n
−1(D+

k f(x))−. (4.19)

We may assume that ϕ assumes negative values, otherwise (4.19) is trivial. As in the first part
of the proof, ϕ attains its negative minimum at some x0 ∈ Uk. Therefore

ϕ(x0) < 0 and D−
j ϕ(x0) ≤ 0 for all j ∈ {1, . . . , n}. (4.20)

By (4.16), D+
k aj(x0) ≤ ϕ(x0) < 0 for all j. Combining this with Lemma 4.5 yields

D+
k f(x) =

n∑

j=1

D+
k aj(x)

∏

i 6=j

ai(x+ hek)−
N∑

j=2

hj−1
∑

|I|=j

∏

i∈I
(−D+

k ai(x))
∏

i 6∈I
ai(x+ hek)

≤ ϕ(x0)

n∑

j=1

∏

i 6=j

ai(x0 + hek)

≤ nϕ(x0)




n∏

j=1

∏

i 6=j

ai(x0 + hek)




1

n

= nf(x0 + hek)
n−1

n ϕ(x0).

This completes the proof.

Remark 4.7. Since wh → w uniformly on [0, 1]n, it is an easy consequence of Theorem 4.6 that
w ∈ C0,1([0, 1]n) and

[w]1;[0,1]n ≤ 1√
n
[f ]1;[0,1]n sup

[0,1]n
f

1−n
n , (4.21)

whenever f ∈ C0,1([0, 1]n) is positive. A sharper result is contained in the following lemma.

Lemma 4.8. Let f be a nonnegative function for which f
1

n ∈ C0,1([0, 1]n), and let w be the
maximal bounded viscosity solution of (P3). Then w ∈ C0,1([0, 1]n) and

[w]1;[0,1]n ≤
√
n[f

1

n ]1;[0,1]n . (4.22)

Proof. We first assume that f ∈ C2([0, 1]n) and f > 0. For h > 0, let wh be the maximal
solution of (S3). Since f ∈ C2([0, 1]n), there exists a constant C > 0 such that

D+
i f(x) ≤ fxi

(x) + Ch,
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for all i and all x ∈ Ui := {x ∈ [0, 1]nh : xi ≤ 1− h}. By Theorem 4.6

D+
i wh(x) ≤ sup

x∈Ui

1

n
f(x)

1

n
−1(D+

i f(x))+

≤ sup
x∈Ui

(
1

n
f(x)

1

n
−1fxi

(x) + Ch

)

+

= sup
Ui

(
(f

1

n )xi
+ Ch

)
+

≤ [f
1

n ]1;[0,1]n + Ch.

The opposite inequality is obtained similarly, and we find that

|D+
i wh(x)| ≤ [f

1

n ]1;[0,1]n + Ch,

for all i and all x ∈ Ui. The estimate (4.22) follows from the uniform convergence wh → w as
h→ 0.

We now suppose that f is nonnegative and f
1

n ∈ C0,1([0, 1]n). Extend f to a function
on R

n by setting f(x) = f(π(x)) for x 6∈ [0, 1]n, where π : Rn → [0, 1]n is the closest point

projection. Since π is 1-Lipschitz, [f
1

n ]1,Rn = [f
1

n ]1,[0,1]n . Let ηε denote the standard mollifier,
and define

f ε =
(
ηε ∗ f 1

n + ε
)n
.

It is easy to verify that f ε ∈ C∞([0, 1]n), f ε → f uniformly on [0, 1]n as ε→ 0, and

[(f ε)
1

n ]1;[0,1]n ≤ [f
1

n ]1;[0,1]n . (4.23)

Let wε denote the maximal bounded viscosity solution of (P3) corresponding to f ε. Since f ε

is smooth and positive, the argument above yields

[wε]1;[0,1]n ≤
√
n[(f ε)

1

n ]1;[0,1]n
(4.23)

≤
√
n[f

1

n ]1;[0,1]n .

By the comparison principle for (P3) (Theorem 2.7) and standard results on viscosity solu-
tions [7], we have wε → w uniformly on [0, 1]n as ε→ 0. Therefore

[w]1;[0,1]n ≤
√
n[f

1

n ]1;[0,1]n ,

which completes the proof.

Remark 4.9. The regularity result in Lemma 4.8 is tight, and cannot be significantly gener-
alized. For intance, if f(x) = 2x1, then f is smooth, but f(x)

1

n = (2x1)
1

n is not Lipschitz

on [0, 1]n. The corresponding solution of (P3) is w(x) = x
1

n

1 , which also fails to be Lipschitz
on [0, 1]n. Note that the solution of (P2) is v(x) = (x1 · · · xn)w(x)n = x21x2 · · · xn, which is
smooth on [0, 1]n.

We can now extend Lipschitz regularity to viscosity solutions of (P2).

Lemma 4.10. Suppose f is a nonnegative function for which f
1

n ∈ C0,1([0, 1]n), and let v be
the maximal viscosity solution of (P2). Then v ∈ C0,1([0, 1]n) and

[v]1;[0,1]n ≤ C‖f n−1

n ‖L∞([0,1]n)‖f
1

n ‖C0,1([0,1]n). (4.24)
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Proof. Notice that we can write

v(x) = x1 · · · xnw(x)n, x ∈ [0, 1]n,

where w is the maximal bounded viscosity solution of (P3). Therefore

[v]1;[0,1]n ≤ [wn]1;[0,1]n + [x1 · · · xn]1;[0,1]n sup
[0,1]n

f.

The estimate (4.24) follows from Lemma 4.8 and the inequality

[wn]1;[0,1]n ≤ n‖w‖n−1
L∞([0,1]n)[w]1;[0,1]n .

We expect Lemma 4.10 to hold under the weaker condition that f ∈ C0,1([0, 1]n), but we
do not currently know how to prove this.

4.2.2 Convergence rate

Since we know the scheme (S3) converges, we can prove a result analogous to Proposition 4.4
regarding extensions of viscosity solutions of (P3).

Proposition 4.11. Suppose f ∈ C([0, 1]n) is nonnegative and let w be the maximal bounded
viscosity solution of (P3). Then w(x) = w(x+) is a viscosity solution of

H(x+, w,Dw) = f on (−∞, 1]n, (4.25)

where f(x) = f(x+).

Proof. Let wh : [0, 1]nh → R+ denote the solution of (S3) for h > 0. By Theorem 3.9, wh → w
uniformly on [0, 1]n. Set wh(x) = wh(x+) for x ∈ (−∞, 1]nh. By Proposition 4.4, wh is a
solution of the discrete scheme

H(x+, wh(x),D
−wh(x)) = f(x) for all x ∈ (−∞, 1]nh.

Since wh → w uniformly on (−∞, 1]n, Theorem 2.2 shows that w is a viscosity solution of
(4.25).

Before proving a convergence rate for (S3), we need another preliminary proposition.

Proposition 4.12. For (x0, z0, p0) ∈ R
n × R× R

n such that H(x0, z0, p0) > 0

∂H

∂z
(x0, z0, p0) ≥ nH(x0, z0, p0)

n−1

n . (4.26)

Proof. Since H(x0, z0, p0) > 0 we can write

H(x, z, p) =

n∏

i=1

(z + nxipi),
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in a sufficiently small neighborhood of (x0, z0, p0). In this neighborhood

∂

∂z
H(x, z, p) = H(x, z, p)

n∑

i=1

1

z + nxipi

≥ nH(x, z, p)

(
n∏

i=1

1

z + nxipi

) 1

n

= nH(x, z, p)
n−1

n ,

where we used the inequality of arithmetic and geometric means.

We now give the proof of Theorem 1.2.

Proof. We extend f to a function on (−∞, 1]n by setting f(x) = f(x+). By Proposition 4.4
we can extend wh to a function on (−∞, 1]nh satisfying

H(x+, wh(x),D
−wh(x)) = f(x) for all x ∈ (−∞, 1]nh,

by setting wh(x) = wh(x+). Similarly, by Proposition 4.11 we can extend w to a function on
(−∞, 1]n by setting w(x) = w(x+), and w is a viscosity solution of

H(x+, w,Dw) = f in (−∞, 1]n.

We will show that
wh − w ≤ C

√
h. (4.27)

The opposite inequality is proved similarly. We can assume that sup[0,1]n
h
(wh − w) > 0. For

α > 0, x ∈ (−∞, 1]nh and y ∈ (−∞, 1]n, set

Φ(x, y) = wh(x)− w(y)− α

2
|x− y|2.

Since wh(x) = wh(x+), w(y) = w(y+) and |x+ − y+| ≤ |x − y|, there exists xα ∈ [0, 1]nh and
yα ∈ [0, 1]n such that

Φ(xα, yα) = max
(−∞,1]n

h
×(−∞,1]n

Φ. (4.28)

Let ϕ(x) = α
2 |x − yα|. Then wh − ϕ attains its maximum at xα with respect to the grid

(−∞, 1]nh. Therefore D−
i wh(xα) ≥ D−

i ϕ(xα) for all i. Since xα ∈ [0, 1]nh and H is directed,

H(xα, wh(xα),D
−ϕ(xα)) ≤ H(xα, wh(xα),D

−wh(xα)) = f(xα). (4.29)

Since Φ(xα, xα) ≤ Φ(xα, yα), we see that

α

2
|xα − yα|2 ≤ w(xα)− w(yα) ≤ C|xα − yα|, (4.30)

where we invoked Remark 4.7 in the last inequality. Since

D−ϕ(xα) = α(xα − yα)−
αh

2
1,
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we have
|D−ϕ(xα)− pα| ≤ Cαh,

where pα = α(xα − yα). By (4.30), |pα| ≤ C. Therefore, we can invoke the local Lipschitzness
of H in all variables to obtain

|H(xα, wh(xα),D
−ϕ(xα))−H(yα, wh(xα), pα)| ≤ C

(
αh+

1

α

)
.

Combining this with (4.29) yields

H(yα, wh(xα), pα) ≤ f(yα) + C

(
αh +

1

α

)
.

By (4.28) we also have
H(yα, w(yα), pα) ≥ f(yα).

Subtracting these equations yields

H(yα, wh(xα), pα)−H(yα, w(yα), pα) ≤ C

(
αh+

1

α

)
.

Since
wh(xα)− w(yα) ≥ Φ(xα, yα) ≥ sup

[0,1]n
h

(wh − w) > 0,

we have wh(xα) > w(yα). Since f(yα) > 0, we can invoke Proposition 4.12 to find that

nf(yα)
n−1

n (wh(xα)− w(yα)) ≤ H(yα, wh(xα), pα)−H(yα, w(yα), pα) ≤ C

(
αh+

1

α

)
.

Choosing α = 1√
h

we have

sup
[0,1]n

h

(wh − w) ≤ wh(xα)− w(yα) ≤ C
√
h.

4.3 The scheme (S2)

We now prove a convergence rate for (S2). This follows directly from Theorem 1.2 and the
following result.

Lemma 4.13. Suppose f ∈ C0,1([0, 1]n) is positive. Let wh be the solution of (S3), and let
vh be the maximal solution of (S2). Then

|x1 · · · xnwh(x)
n − vh(x)| ≤ Ch for all x ∈ [0, 1]nh , (4.31)

where
C = C

(
n, [f ]1;[0,1]n , inf

[0,1]n
f
)
.
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Proof. Set v(x) = x1 · · · xnwh(x)
n for x ∈ [0, 1]nh . By Lemma 4.5, Remark 4.7, and the

inequality wh ≥ inf f
1

n > 0, we have

D−
i v(x) =

x1 · · · xn
xi

wh(x)
n−1

(
wh(x) + nxiD

−
i wh(x) +O(h)

)
.

Here, we use the notation O(h) to denote function of x that is bounded uniformly by Ch with

C = C
(
n, [f ]1;[0,1]n , inf

[0,1]n
f
)
.

Since wh satisfies (S3) we have

n∏

i=1

(
wh(x) + nxiD

−
i wh(x) +O(h)

)
+
= f(x) +O(h).

It follows that
(D−

1 v(x))+ · · · (D−
n v(x))+ = v(x)n−1 (f(x) +O(h)) .

Therefore, there exists a constant C such that

(D−
1 v(x))+ · · · (D−

n v(x))+ ≤ v(x)n−1 (f(x) + Ch) .

Let α = Ch/ inf f and set vh = (1 + α)vh. Then

(D−
1 vh(x))+ · · · (D−

n vh(x))+ = vh(x)
n−1(1 + α)f(x) ≥ vh(x)

n−1(f(x) + Ch).

Since vh > 0 and f > 0, we can use Theorem 3.3 and Remark 3.4 to conclude that v ≤ vh ≤
vh + Ch on [0, 1]nh .

Likewise, there exists a constant C such that

(D−
1 v(x))+ · · · (D−vn(x))+ ≥ v(x)n−1 (f(x)− Ch) .

Let α = Ch/ inf f , and take h > 0 small enough so that α < 1. Define vh = (1− α)vh. Then

(D−
1 vh(x))+ · · · (D−

n vh(x))+ = vh(x)
n−1(1− α)f(x) ≤ vh(x)

n−1(f(x)− Ch).

Since v > 0 on (0, 1]nh we have v ≥ vh ≥ vh − Ch on [0, 1]nh .

We now have the proof of Theorem 1.1.

Proof. Let wh be the solution of (S3) and let w be the maximal bounded viscosity solution of
(P3). By Theorem 1.2,

|wh(x)− w(x)| ≤ C
√
h for all x ∈ [0, 1]nh .

By Lemma 4.13 we have

|vh(x)− v(x)| ≤ Ch+ x1 · · · xn|wh(x)
n − w(x)n| ≤ C

√
h,

for all x ∈ [0, 1]nh and h > 0 sufficiently small. The inequality (1.5) follows from the lower
bounds

vh(x), v(x) ≥ δn inf
[0,1]n

f for all x ∈ [δ, 1]nh .
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5 Numerical experiments

In this section, we discuss the bisection search method for solving (S1)–(S3), and we show the
results of numerical simulations comparing the three schemes.

5.1 The bisection search

In dimension n = 2, all three schemes have a closed form solution (see (1.2), (1.3), and (1.7)),
and can therefore be efficiently solved up to machine precision. In dimensions n ≥ 3, it is
necessary to use an iterative method to approximate the solution of the scheme. Due to the
monotonicity properties of all three schemes, it is natural and efficient to use the bisection
method, or slight variations thereof. The bisection method requires an initial interval to start
the search, and a specified tolerance for terminating the bisections. The main idea is to set the
tolerance to match the truncation error of each scheme, so that the error from the bisection
method is no greater than the error incurred by using finite differences. We describe the details
for each scheme below.

For the scheme (S1), we use the bisection search method at each x ∈ (0, 1]nh to construct
an approximation ũh of the solution uh of (S1). For the initial interval, we use

I1 = [max{ũh(x− he1), . . . , ũh(x− hen)},max{ũh(x− he1), . . . , ũh(x− hen)}+ hf(x)
1

n ],

and with a slight modification of the bisection method, we can ensure that the solution ũh
satisfies

f(x) ≤ D−
1 ũh(x) · · ·D−

n ũh(x) ≤ (1 + h)f(x) for all x ∈ (0, 1]nh , (5.1)

and ũh(x) = 0 for x ∈ Γh. By comparison for (S1) we have

uh(x) ≤ ũh(x) ≤ (1 + h)
1

nuh(x) ≤ uh(x) + (x1 · · · xn)
1

n (sup f
1

n )h for all x ∈ (0, 1]nh , (5.2)

where uh is the exact solution of (S1). Since this error is no worse than the truncation error
from using first order finite differences, it is unnecessary to continue the bisection search once
(5.1) is satisfied.

For the scheme (S2), we use the same bisection search technique to find ṽh satisfying

ṽh(x)
n−1f(x) ≤ D−

1 ṽh(x) · · ·D−
n ṽh(x) = ṽh(x)

n−1(1 + h)f(x) for all x ∈ (0, 1]nh ,

with ṽh(x) = 0 for x ∈ Γh. By Remark 3.2, we may take the initial interval to be

I2 = [max{ṽh(x− he1), . . . , ṽh(x− hen)}, ṽh(x− he1) + · · ·+ ṽh(x− hen) + hnf(x)].

Letting vh denote the exact solution of (S3) we have by Theorem 3.3 and Remark 3.5 that

vh(x) ≤ ṽh(x) ≤ (1 + h)vh(x) ≤ vh(x) + (x1 · · · xn) (sup f)h. (5.3)

As before, this error is smaller than the truncation error introduced by discretizing (P2), which
justifies our choice of stopping condition for the bisection search.

Finally, for the scheme (S3), we use the bisection method to obtain w̃h satisfying

f(x) ≤
n∏

i=1

(w̃h(x) + nxiD
−
i w̃h(x)) ≤ (1 + h)f(x) for all x ∈ [0, 1]nh .
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Figure 2: Depiction of the level sets of the viscosity solutions of (P1) in dimension n = 2 for
each of the three test cases.

We take the initial interval for the search to be

I3 =

[
σ, σ + hf(x)

1

n

n∏

i=1

(nxi + h)−
1

n

]
,

where

σ = max

{
nx1w̃h(x− he1)

nx1 + h
, . . . ,

nxnw̃h(x− hen)

nxn + h

}
.

By Lemma 3.8 we have

wh(x) ≤ w̃h(x) ≤ (1 + h)
1

nwh(x) ≤ wh(x) +
1

n

(
sup f

1

n

)
h, (5.4)

where wh is the exact solution of (S3).

5.2 Simulations

We show here the results of some numerical simulations comparing the three schemes (S1),
(S2), and (S3). We first consider

f1(x) =

{
1, if max{x1, . . . , xn} > 0.5

0, otherwise.

The solution of (P1) is given by

u1(x) = n max
i∈{1,...,n}





(
xi −

1

2

)

+

∏

j 6=i

xj





1

n

.

The level sets of u1 are illustrated in Figure 2(a). Tables 1, 2 and 3 show the ℓ∞ errors
and orders of convergence for f1 in dimensions n = 2, n = 3, and n = 4, respectively. For
each scheme, the ℓ∞ errors are measured by how well the schemes approximate the viscosity
solution u1 of (P1).

This is an interesting test case because f1 is discontinuous, so Theorems 1.1 and 1.2 do not
apply. We see that (S1) and (S3) have experimental convergence rates on the order of O(h

1

n ).
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(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

2.5× 10−2 7.1 × 10−2 2.1× 10−2 6.7× 10−2

6.3× 10−3 3.4 × 10−2 0.54 5.7× 10−3 0.93 3.3× 10−2 0.51
1.6× 10−3 1.6 × 10−2 0.51 1.5× 10−3 0.97 1.6× 10−2 0.50
3.9× 10−4 8.2 × 10−3 0.50 3.8× 10−4 0.98 8.2× 10−3 0.50
9.8× 10−5 4.1 × 10−3 0.50 9.7× 10−5 0.99 4.1× 10−3 0.50
2.4× 10−5 2.0 × 10−3 0.50 2.4× 10−5 1.00 2.0× 10−3 0.50

Table 1: Rates of convergence for f1 in dimension n = 2.

(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

5× 10−2 3.1 × 10−1 9.1× 10−2 2.1× 10−1

2.5× 10−2 2.3 × 10−1 0.41 5.3× 10−2 0.79 1.7× 10−1 0.34
1.3× 10−2 1.8 × 10−1 0.38 3.0× 10−2 0.80 1.3× 10−1 0.34
6.3× 10−3 1.4 × 10−1 0.36 1.7× 10−2 0.82 1.1× 10−1 0.33
3.1× 10−3 1.1 × 10−1 0.35 9.5× 10−3 0.84 8.5× 10−2 0.33
1.6× 10−3 8.5 × 10−2 0.34 5.3× 10−3 0.85 6.7× 10−2 0.33

Table 2: Rates of convergence for f1 in dimension n = 3.

(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

2.5× 10−1 1.1 × 10−0 3.8× 10−1 4.9× 10−1

1.3× 10−1 7.9 × 10−1 0.46 2.4× 10−1 0.68 4.1× 10−1 0.26
6.3× 10−2 6.0 × 10−1 0.40 1.5× 10−1 0.64 3.5× 10−1 0.25
3.1× 10−2 4.7 × 10−1 0.36 9.5× 10−2 0.70 2.9× 10−1 0.25
1.6× 10−2 3.7 × 10−1 0.32 5.7× 10−2 0.72 2.5× 10−1 0.25
7.8× 10−3 3.1 × 10−1 0.29 3.4× 10−2 0.75 2.1× 10−1 0.25

Table 3: Rates of convergence for f1 in dimension n = 4.

This should be expected, as u1 and w1 := u1/n(x1 · · · xn)
1

n are at most Hölder continuous
with exponent 1

n
, and have similar gradient singularities where u1 transitions from zero to a

positive value. On the other hand, v1 := un1/n
n is Lipschitz continuous on [0, 1]n, and we

correspondingly observe a better convergence rate from (S2). This illustrates the important
fact that the transformation v = un/nn regularizes gradient singularities anywhere in the
domain [0, 1]n, and therefore we expect (S2) to have the best convergence rate in general. It is
interesting to note that (S2) attains its formal convergence rate of O(h) in dimension n = 2,
but appears to have a strictly worse rate in higher dimensions.

The second case we consider is

f2(x) =
1

nn(k + 1)n

n∏

i=1




n∑

j=1

sin(kxj)
2 + nk + nkxi sin(2kxi)


 ,
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(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

2.5× 10−2 9.5 × 10−2 2.4× 10−2 2.4× 10−2

6.3× 10−3 4.6 × 10−2 0.53 6.1× 10−3 0.99 5.9× 10−3 1.01
1.6× 10−3 2.3 × 10−2 0.50 1.6× 10−3 0.97 1.4× 10−3 1.02
3.9× 10−4 1.1 × 10−2 0.50 4.1× 10−4 0.98 3.5× 10−4 1.02
9.8× 10−5 5.6 × 10−3 0.50 1.0× 10−4 0.99 8.8× 10−5 1.00
2.4× 10−5 2.8 × 10−3 0.50 2.6× 10−5 1.00 2.2× 10−5 0.99

Table 4: Rates of convergence for f2 in dimension n = 2.

(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

5× 10−2 3.6 × 10−1 6.6× 10−2 5.6× 10−2

2.5× 10−2 2.8 × 10−1 0.39 4.8× 10−2 0.46 4.0× 10−2 0.48
1.3× 10−2 2.2 × 10−1 0.36 2.4× 10−2 1.02 2.0× 10−2 1.01
6.3× 10−3 1.7 × 10−1 0.35 1.2× 10−2 0.94 1.0× 10−2 0.96
3.1× 10−3 1.3 × 10−1 0.34 6.2× 10−3 0.98 5.3× 10−3 0.97
1.6× 10−3 1.1 × 10−1 0.34 3.2× 10−3 0.96 2.7× 10−3 0.96

Table 5: Rates of convergence for f2 in dimension n = 3.

(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

2.5× 10−1 1.6 × 10−0 4.0× 10−1 3.1× 10−1

1.3× 10−1 1.2 × 10−0 0.42 3.9× 10−1 3.8× 10−1

6.3× 10−2 6.9 × 10−1 0.79 1.4× 10−1 1.49 1.1× 10−1 1.81
3.1× 10−2 5.3 × 10−1 0.37 7.2× 10−2 0.93 5.8× 10−2 0.88
1.6× 10−2 4.3 × 10−1 0.30 3.7× 10−2 0.94 3.0× 10−2 0.96
7.8× 10−3 3.4 × 10−1 0.28 1.9× 10−2 0.98 1.5× 10−2 0.96

Table 6: Rates of convergence for f2 in dimension n = 4.

where k > 0. In the experiments, we set k = 20. The solution of (P1) is

u2(x) =
1

k + 1
(x1 · · · xn)

1

n




n∑

j=1

sin(kxj)
2 + nk


 .

The level sets of u2 are shown in Figure 2(b). This case is interesting because the solution
u2 is smooth on (0, 1]n, so we expect to see the formal rates of convergence for each scheme.
Tables 4, 5 and 6 show the ℓ∞ errors and orders of convergence in dimensions n = 2, n = 3,
and n = 4, respectively. As expected, schemes (S2) and (S3) show O(h) rates, while the rate

for (S1) appears to be approaching O(h
1

n ) as n increases.
Finally, we consider a case where f is Lipschitz, and u has a gradient discontinuity, which

is common in Hamilton-Jacobi equations due to crossing characteristics. In such a case, the
solution u is not smooth, and so it is unclear a priori whether we will observe the formal or
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(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

2.5× 10−2 8.3 × 10−2 7.5× 10−2 3.1× 10−2

6.3× 10−3 4.2 × 10−2 0.49 1.9× 10−2 1.00 8.0× 10−3 0.98
1.6× 10−3 2.1 × 10−2 0.50 4.7× 10−3 1.00 2.0× 10−3 1.00
3.9× 10−4 1.1 × 10−2 0.50 1.2× 10−3 1.00 5.0× 10−4 1.00
9.8× 10−5 5.3 × 10−3 0.50 2.9× 10−4 1.00 1.3× 10−4 1.00
2.4× 10−5 2.7 × 10−3 0.50 7.4× 10−5 1.00 3.1× 10−5 1.00

Table 7: Rates of convergence for f3 in dimension n = 2.

(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

5× 10−2 3.0 × 10−1 2.6× 10−1 1.3× 10−1

2.5× 10−2 2.5 × 10−1 0.31 1.3× 10−1 0.96 6.8× 10−2 0.95
1.3× 10−2 2.0 × 10−1 0.32 6.7× 10−2 0.99 3.5× 10−2 0.97
6.3× 10−3 1.6 × 10−1 0.33 3.3× 10−2 0.99 1.8× 10−2 0.98
3.1× 10−3 1.2 × 10−1 0.33 1.7× 10−2 1.00 8.8× 10−3 0.99
1.6× 10−3 9.9 × 10−2 0.33 8.4× 10−3 1.00 4.4× 10−3 1.00

Table 8: Rates of convergence for f3 in dimension n = 3.

theoretical rates. An example in this setting is

u3(x) = n(x1 · · · xn)
1

nw3(x),

where

w3(x) = Cmax{x1, . . . , xn}+
n∑

j=1

xj.

The level sets of u3 are shown in Figure 2(c). The corresponding right hand side of (P1) is

f3(x) =
1

(C + n)n
(w3(x) + n(1 + C)x(n))

n−1∏

i=1

(w3(x) + nx(i)) .

where x(i) = xπx(i) for a permutation πx such that x(1) ≤ x(2) ≤ · · · ≤ x(n). We set
C = 10 in the experiments. Tables 7, 8 and 9 show the ℓ∞ errors and orders of convergence
in dimensions n = 2, n = 3, and n = 4, respectively. We note that the formal rates of
convergence are observed in this case for all schemes.
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(S1) (S2) (S3)

Mesh size h ℓ∞ Error Order ℓ∞ Error Order ℓ∞ Error Order

2.5× 10−1 8.5 × 10−1 1.4× 10−0 6.3× 10−1

1.3× 10−1 6.6 × 10−1 0.37 7.7× 10−1 0.84 3.8× 10−1 0.73
6.3× 10−2 5.5 × 10−1 0.26 4.1× 10−1 0.89 2.1× 10−1 0.86
3.1× 10−2 4.6 × 10−1 0.25 2.2× 10−1 0.94 1.1× 10−1 0.91
1.6× 10−2 3.9 × 10−1 0.25 1.1× 10−1 0.98 5.6× 10−2 0.96
7.8× 10−3 3.2 × 10−1 0.25 5.5× 10−2 0.99 2.8× 10−2 0.99

Table 9: Rates of convergence for f3 in dimension n = 4.

A Properties of finite differences

We give the proof of Lemma 4.5 here.

Proof. We proceed by induction. The base case of N = 2 is exactly Proposition 4.1 (ii).
Assume (4.8) holds for some N ≥ 2. Then by the inductive hypothesis and base case

D±
k (u1 · · · uNuN+1) = (u1 · · · uN )D±

k uN+1 + uN+1D
±
k (u1 . . . uN )± hD±

k (u1 · · · uN )D±
k uN+1

=
N+1∑

j=1

D±
k uj

∏

i 6=j

ui + uN+1

N∑

j=2

(±h)j−1
∑

|I|=j

∏

i∈I
D±

k ui
∏

i 6∈I
ui

± hD±
k (u1 · · · uN )D±

k uN+1. (A.1)

Notice that

±hD±
k (u1 · · · uN )D±

k uN+1

= ±hD±
k uN+1




N∑

j=1

D±
k uj

∏

i 6=j

ui +

N∑

j=2

(±h)j−1
∑

|I|=j

∏

i∈I
D±

k ui
∏

i 6∈I
ui




=

N∑

j=1

±hD±
k uN+1D

±
k uj

∏

i 6=j

ui +

N∑

j=2

(±h)j
∑

|I|=j

D±
k uN+1

∏

i∈I
D±

k ui
∏

i 6∈I
ui

=

N+1∑

j=2

(±h)j−1
∑

|I|=j
N+1∈I

∏

i∈I
D±

k ui
∏

i 6∈I
ui, (A.2)

where in the final summation, I ⊆ {1, . . . , N + 1}. We also have

uN+1

N∑

j=2

(±h)j−1
∑

|I|=j

∏

i∈I
D±

k ui
∏

i 6∈I
ui =

N+1∑

j=2

(±h)j−1
∑

|I|=j
N+16∈I

∏

i∈I
D±

k ui
∏

i 6∈I
ui.

Combining this with (A.1) and (A.2) we have

D±
k (u1 · · · uNuN+1) =

N+1∑

j=1

D±
k uj

∏

i 6=j

ui +
N+1∑

j=2

(±h)j−1
∑

|I|=j

∏

i∈I
D±

k ui
∏

i 6∈I
ui.

This verifies (4.8) for N + 1. The proof is completed by mathematical induction.
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