Skip to main content
Log in

Numerical schemes and rates of convergence for the Hamilton–Jacobi equation continuum limit of nondominated sorting

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Non-dominated sorting arranges a set of points in n-dimensional Euclidean space into layers by repeatedly removing the coordinatewise minimal elements. It was recently shown that nondominated sorting of random points has a Hamilton–Jacobi equation continuum limit. The obvious numerical scheme for this PDE has a slow convergence rate of \(O(h^\frac{1}{n})\). In this paper, we introduce two new numerical schemes that have formal rates of O(h) and we prove the usual \(O(\sqrt{h})\) theoretical rates. We also present the results of numerical simulations illustrating the difference between the formal and theoretical rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We say that \(u:\Omega \subset \mathbb {R}^n \rightarrow \mathbb {R}\) is nondecreasing if \(x_i \mapsto u(x)\) is nondecreasing for all i.

References

  1. Bardi, M., Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  2. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Bollobás, B., Winkler, P.: The longest chain among random points in Euclidean space. Proc. Am. Math. Soc. 103(2), 347–353 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calder, J.: Directed last passage percolation with discontinuous weights. J. Stat. Phys. 158(45), 903–949 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calder, J., Esedoglu, S., Hero, A.O.: A Hamilton–Jacobi equation for the continuum limit of non-dominated sorting. SIAM J. Math. Anal. 46(1), 603–638 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Calder, J., Esedoglu, S., Hero, A.O.: A PDE-based approach to non-dominated sorting. SIAM J. Numer. Anal. 53(1), 82–104 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crandall, M., Ishii, H., Lions, P.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Deckelnick, K., Elliott, C.M.: Uniqueness and error analysis for Hamilton–Jacobi equations with discontinuities. Interfaces Free Bound. 6(3), 329–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deuschel, J.D., Zeitouni, O.: Limiting curves for i.i.d. records. Ann. Probab. 23(2), 852–878 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Felsner, S., Wernisch, L.: Maximum k-chains in planar point sets: combinatorial structure and algorithms. SIAM J. Comput. 28(1), 192–209 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hammersley, J.: A few seedlings of research. Proc. Sixth Berkeley Symp. Math. Stat. Probab. 1, 345–394 (1972)

    MATH  MathSciNet  Google Scholar 

  14. Hsiao, K.J., Calder, J., Hero III, A.O.: Pareto-depth for multiple-query image retrieval. IEEE Trans. Image Process. 24(2), 583–594 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hsiao, K.J., Xu, K., Calder, J., Hero, A.: Multi-criteria anomaly detection using pareto depth analysis. Adv. Neural Inf. Process. Syst. 25, 854–862 (2012)

    Google Scholar 

  16. Hsiao, K.J., Xu, K., Calder, J., Hero III, A. O.: Multi-criteria similarity-based anomaly detection using pareto depth analysis. IEEE Trans. Neural Netw. Learning Syst. 27(6):1307–1321 (2016)

  17. Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84(21), 4882–4885 (2000)

    Article  Google Scholar 

  18. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton–Jacobi equations. J. Differ. Equ. 59(1), 1–43 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ulam, S. M.: Monte Carlo calculations in problems of mathematical physics. In Beckenbach E. F. (ed.) Modern Mathematics for the engineer. Second Series, McGraw-Hill, New York (1961)

  21. Viennot, G.: Chain and antichain families, grids and Young tableaux. In: Orders: description and roles, North-Holland Mathematics Studies, vol. 99, pp. 409–463 (1984)

  22. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Selim Esedoḡlu and Lawrence C. Evans for valuable discussions about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Calder.

Additional information

The research described in this paper was partially supported by NSF Grants DMS-1500829 and DMS-0914567. Part of this work was completed while the author was supported by a Rackham Predoctoral Fellowship.

A Properties of finite differences

A Properties of finite differences

We give the proof of Lemma 7 here.

Proof

We proceed by induction. The base case of \(N=2\) is exactly Proposition 1(ii). Assume (4.8) holds for some \(N\ge 2\). Then by the inductive hypothesis and base case

$$\begin{aligned} D^\pm _k(u_1\cdots u_N u_{N+1})&= (u_1 \cdots u_N) D^\pm _k u_{N+1} + u_{N+1}D^\pm _k (u_1\dots u_N) \nonumber \\&\quad \pm \, hD^\pm _k (u_1\cdots u_N) D^\pm _k u_{N+1}\nonumber \\&= \sum _{j=1}^{N+1} D^\pm _k u_j\prod _{i\ne j} u_i + u_{N+1}\sum _{j=2}^N (\pm h)^{j-1} \sum _{|I|=j} \prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i\nonumber \\&\quad \pm \, hD^\pm _k (u_1\cdots u_N) D^\pm _k u_{N+1}. \end{aligned}$$
(A.1)

Notice that

$$\begin{aligned}&\pm hD^\pm _k (u_1\cdots u_N) D^\pm _k u_{N+1}\nonumber \\&= \pm h D^\pm _k u_{N+1}\left( \sum _{j=1}^N D^\pm _k u_j\prod _{i\ne j} u_i + \sum _{j=2}^N (\pm h)^{j-1} \sum _{|I|=j} \prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i \right) \nonumber \\&= \sum _{j=1}^N \pm h D^\pm _k u_{N+1}D^\pm _k u_j\prod _{i\ne j} u_i + \sum _{j=2}^N (\pm h)^j \sum _{|I|=j} D^\pm _k u_{N+1}\prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i\nonumber \\&= \sum _{j=2}^{N+1} (\pm h)^{j-1} \sum _{\begin{array}{c} |I|=j \\ N+1 \in I \end{array}} \prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i, \end{aligned}$$
(A.2)

where in the final summation, \(I \subset \{1,\dots ,N+1\}\). We also have

$$\begin{aligned} u_{N+1}\sum _{j=2}^N (\pm h)^{j-1} \sum _{|I|=j} \prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i = \sum _{j=2}^{N+1} (\pm h)^{j-1} \sum _{\begin{array}{c} |I|=j \\ N+1 \not \in I \end{array}} \prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i. \end{aligned}$$

Combining this with (A.1) and (A.2) we have

$$\begin{aligned} D^\pm _k(u_1\cdots u_N u_{N+1}) = \sum _{j=1}^{N+1}D^\pm _k u_j \prod _{i\ne j} u_i+ \sum _{j=2}^{N+1} (\pm h)^{j-1} \sum _{|I|=j} \prod _{i \in I} D_k^\pm u_i \prod _{i\not \in I} u_i. \end{aligned}$$

This verifies (4.8) for \(N+1\). The proof is completed by mathematical induction. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calder, J. Numerical schemes and rates of convergence for the Hamilton–Jacobi equation continuum limit of nondominated sorting. Numer. Math. 137, 819–856 (2017). https://doi.org/10.1007/s00211-017-0895-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0895-5

Mathematics Subject Classification