Skip to main content

Advertisement

Log in

A priori \(L^2\)-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, an elliptic optimization problem with pointwise inequality constraints on the state is considered. The main contributions of this paper are a priori \(L^2\)-error estimates for the discretization error in the optimal states. Due to the non separability of the space for the Lagrange multipliers for the inequality constraints, the problem is tackled by separation of the discretization error into two components. First, the state constraints are discretized. Second, with discretized inequality constraints, a duality argument for the error due to the discretization of the PDE is employed. For the second stage an a priori error estimate is derived with constants depending on the regularity of the dual problem. Finally, we discuss two cases in which these constants can be bounded in a favorable way; leading to higher order estimates than those induced by the known \(L^2\)-error in the control variable. More precisely, we consider a given fixed number of pointwise inequality constraints and a case of infinitely many but only weakly active constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II - a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedix, O., Vexler, B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  6. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Casas, E., Mateos, M.: Numerical approximation of elliptic control problems with finitely many pointwise constraints. Comput. Optim. Appl. 51(3), 1319–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casas, E., Mateos, M., Vexler, B.: New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM Control Optim. Calc. Var. 20(3), 803–822 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, L., Gong, W., Yan, N.: Numerical analysis for the approximation of optimal control problems with pointwise observations. Math. Methods Appl. Sci. 38, 4502–4520 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Prob. 24(5), 055,003,21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goll, C., Wick, T., Wollner, W.: DOpElib: differential equations and optimization environment. http://www.dopelib.net

  15. Goll, C., Wick, T., Wollner, W.: DOpElib: differential equations and optimization environment; a goal oriented software library for solving PDEs and optimization problems with PDEs (2014). Preprint at http://www.dopelib.net/preprint_2014.pdf

  16. Herzog, R., Rösch, A., Ulbrich, S., Wollner, W.: OPTPDE: a collection of problems in PDE-constrained optimization. In: Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., Ulbrich, S. (eds.) Trends in PDE Constrained Optimization, International Series of Numerical Mathematics, vol. 165, pp. 539–543. Springer, Berlin (2014)

    Google Scholar 

  17. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications., 1st edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Hinze, M., Tröltzsch, F.: Discrete concepts versus error analysis in PDE constrained optimization. GAMM-Mitt. 33(2), 148–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55, 769–802 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Merino, P., Neitzel, I., Tröltzsch, F.: Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discuss. Math. Differ. Incl. Control Optim. 30(2), 221–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Merino, P., Neitzel, I., Tröltzsch, F.: On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90(6), 1047–1074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Merino, P., Tröltzsch, F., Vexler, B.: Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. M2AN. M2AN Math. Model. Numer. Anal. 44(1), 167–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37, 51–85 (2008)

    MathSciNet  MATH  Google Scholar 

  25. OPTPDE—a collection of problems in PDE-constrained optimization. http://www.optpde.net

  26. Rannacher, R.: Zur \(L^{\infty }\)-Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Z. 149(1), 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods. Math. Comput. 31(138), 414–442 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gerd Wachsmuth for pointing out an issue in a prior version of this manuscript. Moreover I. Neitzel and W. Wollner are grateful for the support of their former host institutions the Technische Universität München and the Universität Hamburg, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Neitzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neitzel, I., Wollner, W. A priori \(L^2\)-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints. Numer. Math. 138, 273–299 (2018). https://doi.org/10.1007/s00211-017-0906-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0906-6

Mathematics Subject Classification

Navigation