Skip to main content
Log in

On the long-time stability of a temporal discretization scheme for the three dimensional viscous primitive equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article, a semi-discretized Euler scheme to solve the three dimensional viscous primitive equations is studied. Based on suitable assumptions on the initial data and forcing terms, the long-time stability of the proposed scheme is proven by showing that the \(H^1\) norm (in space variables) of the solutions is bounded at each time step when the time step satisfies certain smallness condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Badia, S., Codina, R., Gutierrez-Santacreu, J.V.: Long-term stability estimates and existence of a global attractor in a finite element approximation of the Navier–Stokes equations with numerical subgrid scale modeling. SIAM J. Numer. Anal. 48(3), 1013–1037 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, C., Li, J., Titi, E.S.: Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch. Ration. Mech. Anal. 214(1), 35–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, C., Titi, E.S.: Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun. Pure Appl. Math. 56, 198–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  7. Debussche, A., Glatt-Holtz, N., Temam, R., Ziane, M.: Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. Nonlinearity 25(7), 2093–2118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Denk, R., Hieber, M., Pruss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 1–114 (2003)

  9. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, New York (1994)

    MATH  Google Scholar 

  10. Geng, J.: \(w^{1, p}\) estimates for elliptic problems with Neumann boundary conditions in lipschitz domains. Adv. Math. 229, 2427–2448 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50(1), 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  13. Guillen-Gonzalez, F., Masmoudi, N., Rodriguez-Bellido, M.A.: Anisotropic estimates and strong solutions of the primitive equations. Differ. Integral Equ. 14, 1381–1408 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Guo, B., Huang, D., Huang, D.: Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force. J. Differ. Equ. 259(6), 2388–2407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haltiner, G., Williams, R.: Numerical Weather Prediction and Dynamic Meteorology, 2nd edn. Wiley, New York (1980)

    Google Scholar 

  16. He, Y.: First order decoupled method of the primitive equations of the ocean I: time discretization. J. Math. Anal. Appl. 412(2), 895–921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y.: Second order decoupled implicit/explicit method of the primitive equations of the ocean I: time discretization. Int. J. Numer. Anal. Model. 12(1), 1–30 (2015)

    MathSciNet  MATH  Google Scholar 

  18. He, Y., Wu, J.: Global H2-regularity results of the 3D primitive equations of the ocean. Int. J. Numer. Anal. Model. 11(3), 452–477 (2014)

    MathSciNet  Google Scholar 

  19. He, Y., Zhang, Y., Xu, H., Chen, Z.-G.: First-order decoupled finite element of the three-dimensional primitive equations of the ocean. SIAM J. Sci. Comput. 38(1), A273–A301 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heister, T., Olshanskii, M.A., Rebholz, L.G.: Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations Numersche Mathematik 135(1), 143–167 (2017)

  21. Honda, H., Tani, A.: Some boundedness of solutions for the primitive equations of the atmosphere and the ocean. ZAMM Z. Angew. Math. Mech. 95(1), 38–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hong, Y., Wirosoetisno, D.: Timestepping schemes for the 3D Navier–Stokes equations. Appl. Numer. Math. 96, 153–164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsia, C.-H., Shiue, M.-C.: On the asymptotic stability analysis and the existence of time-periodic solutions of the primitive equations. Indiana Univ. Math. J. 62(2), 403–441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ju, N.: On the global stability of a temporal discretization scheme for the Navier–Stokes equations. IMA J. Numer. Anal. 22, 577–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ju, N., Temam, R.: Finite dimensions of the global attractor for 3D primitive equations with viscosity. J. Nonlinear Sci. 25(1), 131–155 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ju, N.: The global attractor for the solutions to the 3D viscous primitive equations. Discrete Contin. Dyn. Syst. 17(1), 159–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kobelkov, G.M.: Existence of a solution in the larges for the 3D large-scale ocean dynamics equations. J. Math. Fluid Mech. 9(4), 588–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kukavica, I., Pei, Y., Rusin, W., Ziane, M.: Primitive equations with continuous initial data. Nonlinearity 27(6), 1135–1155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20, 2739–2753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  31. Lions, J.L., Temam, R., Wang, S.: On the equations of the large scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Medjo, T.T., Temam, R.: The two-grid finite difference method for the primitive equations of the ocean. Nonlinear Anal. 69, 1034–1056 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    Book  MATH  Google Scholar 

  34. Petcu, M., Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis, Special Volume on Computational Methods for the Oceans and the Atmosphere, vol. XIV. Elsevier, Amsterdam (2008)

    Google Scholar 

  35. Shen, J.: Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods. Appl. Anal. 38, 201–229 (1990)

    Article  MathSciNet  Google Scholar 

  36. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics. North-Holland, Amsterdam (2004)

    Google Scholar 

  37. Tone, F.: On the long-time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 23(5), 1235–1248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121(4), 753–779 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chun-Hsiung Hsia and Ming-Cheng Shiue were partially supported by the Ministry of Science and Technology, Taiwan under grant MOST 104-2628-M-002-007-MY3 and MOST 104-2115-M-009-012-MY2 (MOST 106-2115-M-009 -011 -MY2) respectively. The authors would like to thank Professor Jie Shen for his very useful feedbacks when Hsia delivered a talk in the first draft of this research project. The authors also appreciate Professor Roger Temam for his comments and kind supports during Shiue’s visit to ISCAM at Indiana University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Cheng Shiue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsia, CH., Shiue, MC. On the long-time stability of a temporal discretization scheme for the three dimensional viscous primitive equations. Numer. Math. 139, 187–245 (2018). https://doi.org/10.1007/s00211-017-0934-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0934-2

Mathematics Subject Classification

Navigation