Skip to main content
Log in

Local error analysis for the Stokes equations with a punctual source term

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The solution of the Stokes problem with a punctual force in source term is not \(H^1 \times \mathbb {L}^2\) and therefore the approximation by a finite element method is suboptimal. In the case of Poisson problem with a Dirac mass in the right-hand side, an optimal convergence for the Lagrange finite elements has been shown on a subdomain which excludes the singularity in \(\mathbb {L}^2\)-norm by Köppl and Wohlmuth. Here we show a quasi-optimal local convergence in \(H^1 \times \mathbb {L}^2\)-norm for a \(\mathbb {P}_{k}/\mathbb {P}_{k-1}\)-finite element method, \(k \geqslant 2\), and for the \(\mathbb {P}_{1}{\mathrm{b}}/\mathbb {P}_{1}\). The error is still analysed on a subdomain which does not contain the singularity. The proof is based on local Arnold and Liu error estimates, a weak version of Aubin–Nitsche duality lemma applied to the Stokes problem and discrete inf-sup conditions. These theoretical results are generalized to a wide class of finite element methods, before being illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105(2), 193–216 (2006)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Liu, X.B.: Local error estimates for finite element discretizations of the Stokes equations. RAIRO Modél. Math. Anal. Numér. 29(3), 367–389 (1995)

    Article  MathSciNet  Google Scholar 

  3. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)

    Article  MathSciNet  Google Scholar 

  4. Bertoluzza, S.: The discrete commutator property of approximation spaces. C. R. Acad. Sci. Paris Sér. I Math. 329(12), 1097–1102 (1999)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). Théorie et applications. [Theory and applications]

  6. Casas, E.: \(L^2\) estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47(4), 627–632 (1985)

    Article  MathSciNet  Google Scholar 

  7. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MathSciNet  Google Scholar 

  8. Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013)

    Article  MathSciNet  Google Scholar 

  9. Casas, E., Zuazua, E.: Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62(4), 311–318 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]

  11. Fulford, G.R., Blake, J.R.: Muco-ciliary transport in the lung. J. Theor. Biol. 121(4), 381–402 (1986)

    Article  Google Scholar 

  12. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). Theory and algorithms

    Book  Google Scholar 

  13. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  14. Köppl, T., Wohlmuth, B.: Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52(4), 1753–1769 (2014)

    Article  MathSciNet  Google Scholar 

  15. Lacouture, L.: A numerical method to solve the Stokes problem with a punctual force in source term. C. R. Mecanique 343(3), 187–191 (2015)

    Article  Google Scholar 

  16. Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013)

    Article  MathSciNet  Google Scholar 

  17. Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comp. 28, 937–958 (1974)

    Article  MathSciNet  Google Scholar 

  18. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  19. Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44(5), 1844–1863 (2005)

    Article  MathSciNet  Google Scholar 

  20. Scott, L.R.: Finite element convergence for singular data. Numer. Math. 21, 317–327, (1973/74)

    Article  MathSciNet  Google Scholar 

  21. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI, (2001). Theory and numerical analysis, Reprint of the 1984 edition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Lacouture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoluzza, S., Decoene, A., Lacouture, L. et al. Local error analysis for the Stokes equations with a punctual source term. Numer. Math. 140, 677–701 (2018). https://doi.org/10.1007/s00211-018-0976-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0976-0

Mathematics Subject Classification