Abstract
The solution of the Stokes problem with a punctual force in source term is not \(H^1 \times \mathbb {L}^2\) and therefore the approximation by a finite element method is suboptimal. In the case of Poisson problem with a Dirac mass in the right-hand side, an optimal convergence for the Lagrange finite elements has been shown on a subdomain which excludes the singularity in \(\mathbb {L}^2\)-norm by Köppl and Wohlmuth. Here we show a quasi-optimal local convergence in \(H^1 \times \mathbb {L}^2\)-norm for a \(\mathbb {P}_{k}/\mathbb {P}_{k-1}\)-finite element method, \(k \geqslant 2\), and for the \(\mathbb {P}_{1}{\mathrm{b}}/\mathbb {P}_{1}\). The error is still analysed on a subdomain which does not contain the singularity. The proof is based on local Arnold and Liu error estimates, a weak version of Aubin–Nitsche duality lemma applied to the Stokes problem and discrete inf-sup conditions. These theoretical results are generalized to a wide class of finite element methods, before being illustrated by numerical simulations.












Similar content being viewed by others
References
Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105(2), 193–216 (2006)
Arnold, D.N., Liu, X.B.: Local error estimates for finite element discretizations of the Stokes equations. RAIRO Modél. Math. Anal. Numér. 29(3), 367–389 (1995)
Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)
Bertoluzza, S.: The discrete commutator property of approximation spaces. C. R. Acad. Sci. Paris Sér. I Math. 329(12), 1097–1102 (1999)
Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). Théorie et applications. [Theory and applications]
Casas, E.: \(L^2\) estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47(4), 627–632 (1985)
Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)
Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013)
Casas, E., Zuazua, E.: Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62(4), 311–318 (2013)
Ciarlet, P.G.: The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]
Fulford, G.R., Blake, J.R.: Muco-ciliary transport in the lung. J. Theor. Biol. 121(4), 381–402 (1986)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). Theory and algorithms
Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)
Köppl, T., Wohlmuth, B.: Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52(4), 1753–1769 (2014)
Lacouture, L.: A numerical method to solve the Stokes problem with a punctual force in source term. C. R. Mecanique 343(3), 187–191 (2015)
Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013)
Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comp. 28, 937–958 (1974)
Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992)
Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44(5), 1844–1863 (2005)
Scott, L.R.: Finite element convergence for singular data. Numer. Math. 21, 317–327, (1973/74)
Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI, (2001). Theory and numerical analysis, Reprint of the 1984 edition
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bertoluzza, S., Decoene, A., Lacouture, L. et al. Local error analysis for the Stokes equations with a punctual source term. Numer. Math. 140, 677–701 (2018). https://doi.org/10.1007/s00211-018-0976-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-018-0976-0