Skip to main content
Log in

Mixed finite elements for global tide models with nonlinear damping

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study mixed finite element methods for the rotating shallow water equations with linearized momentum terms but nonlinear drag. By means of an equivalent second-order formulation, we prove long-time stability of the system without energy accumulation. We also give rates of damping in unforced systems and various continuous dependence results on initial conditions and forcing terms. A priori error estimates for the momentum and free surface elevation are given in \(L^2\) as well as for the time derivative and divergence of the momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15(1), 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    Article  MathSciNet  Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  4. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  5. Cavalcanti, M.M., Domingos, V.N., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236(2), 407–459 (2007)

    Article  MathSciNet  Google Scholar 

  6. Comblen, R., Lambrechts, J., Remacle, J.F., Legat, V.: Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations. Int. J. Numer. Methods Fluids 63(6), 701–724 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Cotter, C., Ham, D.: Numerical wave propagation for the triangular P1DG-P2 finite element pair. J. Comput. Phys. 230(8), 2806–2820 (2011). https://doi.org/10.1016/j.jcp.2010.12.024

    Article  MathSciNet  MATH  Google Scholar 

  8. Cotter, C.J., Kirby, R.C.: Mixed finite elements for global tide models. Numer. Math. 133(2), 255–277 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cotter, C.J., Shipton, J.: Mixed finite elements for numerical weather prediction. J. Comput. Phys. 231(21), 7076–7091 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cotter, C.J., Thuburn, J.: A finite element exterior calculus framework for the rotating shallow-water equations. J. Comput. Phys. 257, 1506–1526 (2014)

    Article  MathSciNet  Google Scholar 

  11. Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element methods for the wave equation. Comput. Methods Appl. Mech. Eng. 82(1–3), 205–222 (1990)

    Article  MathSciNet  Google Scholar 

  12. Danilov, S.: On utility of triangular C-grid type discretization for numerical modeling of large-scale ocean flows. Ocean Dyn. 60(6), 1361–1369 (2010)

    Article  Google Scholar 

  13. Foreman, M., Henry, R., Walters, R., Ballantyne, V.: A finite element model for tides and resonance along the north coast of British Columbia. J. Geophys. Res. Oceans (1978–2012) 98(C2), 2509–2531 (1993)

    Article  Google Scholar 

  14. Garrett, C., Kunze, E.: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 57–87 (2007)

    Article  MathSciNet  Google Scholar 

  15. Geveci, T.: On the application of mixed finite element methods to the wave equation. Math. Model. Numer. Anal. 22, 243–250 (1988)

    Article  MathSciNet  Google Scholar 

  16. Hill, D.F., Griffiths, S.D., Peltier, W.R., Horton, B.P., Törnqvist, T.E.: High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. J. Geophys. Res. 116, C10014 (2011). https://doi.org/10.1029/2010JC006896.

  17. Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012)

    Article  MathSciNet  Google Scholar 

  18. Jayne, S.R., Laurent, L.C.S.: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett. 28(5), 811–814 (2001)

    Article  Google Scholar 

  19. Jenkins, E.W., Rivière, B., Wheeler, M.F.: A priori error estimates for mixed finite element approximations of the acoustic wave equation. SIAM J. Numer. Anal. 40(5), 1698–1715 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kawahara, M., Hasegawa, K.: Periodic Galerkin finite element method of tidal flow. Int. J. Numer. Methods Eng. 12(1), 115–127 (1978)

    Article  MathSciNet  Google Scholar 

  21. Kirby, R.C., Kieu, T.T.: Symplectic-mixed finite element approximation of linear acoustic wave equations. Numerische Mathematik. 130(2), 257–291 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lamb, H. (ed.): Hydrodynamics, 6th edn. Dover Publications, New York (1945)

    MATH  Google Scholar 

  23. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Le Roux, D.Y.: Dispersion relation analysis of the \(P^{NC}_1-P_1\) finite-element pair in shallow-water models. SIAM J. Sci. Comput. 27(2), 394–414 (2005)

    Article  MathSciNet  Google Scholar 

  25. Le Roux, D.Y.: Spurious inertial oscillations in shallow-water models. J. Comput. Phys. 231(24), 7959–7987 (2012)

    Article  MathSciNet  Google Scholar 

  26. Le Roux, D.Y., Pouliot, B.: Analysis of numerically induced oscillations in two-dimensional finite-element shallow-water models part II: free planetary waves. SIAM J. Sci. Comput. 30(4), 1971–1991 (2009)

    Article  Google Scholar 

  27. Le Roux, D.Y., Rostand, V., Pouliot, B.: Analysis of numerically induced oscillations in 2D finite-element shallow-water models part I: inertia-gravity waves. SIAM J. Sci. Comput. 29(1), 331–360 (2007)

    Article  MathSciNet  Google Scholar 

  28. Lefevre, F., Lyard, F., Provost, C.L., Schrama, E.J.: FES99: a global tide finite element solution assimilating tide gauge and altimetric information. J. Atmos. Ocean. Technol. 19(9), 1345–1356 (2002)

    Article  Google Scholar 

  29. McRae, A.T.T., Cotter, C.J.: Energy-and enstrophy-conserving schemes for the shallow-water equations, based on mimetic finite elements. Q. J. R. Meteorol. Soc. 140(684), 2223–2234 (2014)

    Article  Google Scholar 

  30. Munk, W., Wunsch, C.: Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res. Part I 45(12), 1977–2010 (1998)

    Article  Google Scholar 

  31. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. (TOMS) 43(3), 24 (2016)

    Article  MathSciNet  Google Scholar 

  32. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proceedings of the Conference, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  33. Rognes, M.E., Ham, D.A., Cotter, C.J., McRae, A.T.T.: Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2. Geosci. Model Dev. Discuss. 6(3), 3557–3614 (2013)

    Article  Google Scholar 

  34. Rostand, V., Le Roux, D.Y.: Raviart–Thomas and Brezzi–Douglas-*Marini finite-element approximations of the shallow-water equations. Int. J. Numer. Methods Fluids 57(8), 951–976 (2008)

    Article  MathSciNet  Google Scholar 

  35. Salehipour, H., Stuhne, G., Peltier, W.: A higher order discontinuous Galerkin, global shallow water model: global ocean tides and aquaplanet benchmarks. Ocean Model. 69, 93–107 (2013)

    Article  Google Scholar 

  36. Stammer, D., et al.: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys. 52(3), 243–282 (2014)

    Article  Google Scholar 

  37. Walters, R.A.: Coastal ocean models: two useful finite element methods. Cont. Shelf Res. 25(7), 775–793 (2005)

    Article  Google Scholar 

  38. Weller, H., Ringler, T., Piggott, M., Wood, N.: Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull. Am. Meteorol. Soc. 91(1), 105–108 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Kirby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotter, C.J., Graber, P.J. & Kirby, R.C. Mixed finite elements for global tide models with nonlinear damping. Numer. Math. 140, 963–991 (2018). https://doi.org/10.1007/s00211-018-0980-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0980-4

Mathematics Subject Classification

Navigation