Skip to main content
Log in

Regularization of inverse problems by two-point gradient methods in Banach spaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a two-point gradient method for solving inverse problems in Banach spaces which is based on the Landweber iteration and an extrapolation strategy. The method allows to use non-smooth penalty terms, including the \(L^1\)-like and the total variation-like penalty functionals, which are significant in reconstructing special features of solutions such as sparsity and piecewise constancy in practical applications. The design of the method involves the choices of the step sizes and the combination parameters which are carefully discussed. Numerical simulations are presented to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov accelerated forward–backward method is actually faster than \(O(1/k^2)\). SIAM J. Optim. 26, 1824–1834 (2016)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bot, R., Hein, T.: Iterative regularization with a geeral penalty term|theory and applications to \(L^1\) and TV regularization. Inverse Probl. 28, 104010 (2012)

    Article  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends\(^{\textregistered }\) Mach. Learn. 3, 1–122 (2011)

    Article  MathSciNet  Google Scholar 

  6. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  7. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, Second Edition, Applied Mathematical Sciences, vol. 95. Springer, Berlin (2016)

    Book  Google Scholar 

  8. Hanke, M.: Accelerated Landweber iterations for the solution of ill-posed equations. Numer. Math. 60, 341–373 (1991)

    Article  MathSciNet  Google Scholar 

  9. Hanke, M.: A regularizing Levenberg–Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)

    Article  MathSciNet  Google Scholar 

  10. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)

    Article  MathSciNet  Google Scholar 

  11. Hansen, P.C., Saxild-Hansen, M.: AIR tools—a MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236, 2167–2178 (2012)

    Article  MathSciNet  Google Scholar 

  12. Hegland, M., Jin, Q., Wang, W.: Accelerated Landweber iteration with convex penalty for linear inverse problems in Banach spaces. Appl. Anal. 94, 524–547 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hein, T., Kazimierski, K.S.: Accelerated Landweber iteration in Banach spaces. Inverse Probl. 26, 1037–1050 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hubmer, S., Ramlau, R.: Convergence analysis of a two-point gradient method for nonlinear ill-posed problems. Inverse Probl. 33, 095004 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hubmer, S., Ramlau, R.: Nesterov’s accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional. Inverse Probl. 34, 095003 (2018)

    Article  MathSciNet  Google Scholar 

  16. Jin, Q.: Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces. Inverse Probl. 28, 065002 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jin, Q.: Landweber–Kaczmarz method in Banach spaces with inexact inner solvers. Inverse Probl. 32, 104005 (2016)

    Article  MathSciNet  Google Scholar 

  18. Jin, Q., Wang, W.: Landweber iteration of Kaczmarz type with general non-smooth convex penalty functionals. Inverse Probl. 29, 085011 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jin, Q., Yang, H.: Levenberg–Marquardt method in Banach spaces with general convex regularization terms. Numer. Math. 133, 655–684 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jin, Q., Zhong, M.: On the iteratively regularized Gauss–Newton method in Banach spaces with applications to parameter identification problems. Numer. Math. 124, 647–683 (2013)

    Article  MathSciNet  Google Scholar 

  21. Jin, Q., Zhong, M.: Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer. Math. 127, 485–513 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kaltenbacher, B.: A convergence rates result for an iteratively regularized Gauss–Newton Halley method in Banach space. Inverse Probl. 31, 015007 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25, 065003 (2009)

    Article  MathSciNet  Google Scholar 

  24. Kress, R.: Linear Integral Equations. Springer, Berlin (1989)

    Book  Google Scholar 

  25. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  26. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  27. Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22, 311–329 (2006)

    Article  MathSciNet  Google Scholar 

  28. Schöpfer, F., Schuster, T.: Fast regularizing sequential subspace optimization in Banach spaces. Inverse Probl. 25, 015013 (2009)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Wang, W., Han, B.: An iteration regularizaion method with general convex penalty for nonlinear inverse problems in Banach spaces. J. Comput. Appl. Math. 361, 472–486 (2019)

    Article  MathSciNet  Google Scholar 

  30. Wang, Y.C., Liu, J.J.: Identification of non-smooth boundary heat dissipation by partial boundary data. Appl. Math. Lett. 69, 42–48 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zălinscu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)

    Book  Google Scholar 

  32. Zhong, M., Wang, W.: A regularizing multilevel approach for nonlinear inverse problems. Appl. Numer. Math. 32, 297–331 (2019)

    Article  MathSciNet  Google Scholar 

  33. Zhu, M., Chan, T.F.: An efficient primaldual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA (2008)

Download references

Acknowledgements

The work of M. Zhong is supported by the National Natural Science Foundation of China (Nos. 11871149, 11671082) and and supported by Zhishan Youth Scholar Program of SEU. The work of W. Wang is partially supported by the National Natural Science Foundation of China (No. 11871180) and Natural Science Foundation of Zhejiang Province (No. LY19A010009). The work of Q Jin is partially supported by the Future Fellowship of the Australian Research Council (FT170100231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Wang, W. & Jin, Q. Regularization of inverse problems by two-point gradient methods in Banach spaces. Numer. Math. 143, 713–747 (2019). https://doi.org/10.1007/s00211-019-01068-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01068-0

Mathematics Subject Classification

Navigation