Skip to main content
Log in

Transparent boundary conditions and numerical computation for singularly perturbed telegraph equation on unbounded domain

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the numerical solution for the singularly perturbed telegraph equation (SPTE) on unbounded domain. Firstly, we investigate the first consistent effective asymptotic expansion for the solution of SPTE by the asymptotic analysis and obtain that the solutions of SPTE have an initial layer near \(t=0\). Next, we introduce the artificial boundaries \(\varGamma _{\pm }\) to get a finite computational domain \(\varOmega _0\) and derive the transparent boundary conditions on \(\varGamma _{\pm }\) for SPTE. Hence, we can reduce the original problem to an initial-boundary value problem (IBVP) on the bounded domain \(\varOmega _0\), and then the equivalence between the original problem and the IBVP on \(\varOmega _0\) is proved. In addition, we propose a Crank–Nicolson Galerkin scheme to solve the reduced problem. Furthermore, we use the exponential wave integrator method to deal with the initial layer. We also analyze the stability and convergence of the Crank–Nicolson Galerkin scheme. Finally, some numerical examples validate our theoretical results and show the efficiency and reliability of the transparent boundary conditions and the Crank–Nicolson Galerkin scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso, J.M., Mawhin, J., Ortega, R.: Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation. J. Math. Pure. Appl. 78(1), 49–63 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Antoine, X., Lorin, E., Tang, Q.: A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations. Mol. Phys. 115(15–16), 1861–1879 (2017)

    Google Scholar 

  4. Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bao, W., Cai, Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseudo-spectral method for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 52(3), 1103–1127 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Baumeister, K.J., Hamill, T.D.: Hyperbolic heat-conduction equation—a solution for the semi-infinite body problem. J. Heat Transf. 91(4), 543–548 (1969)

    Google Scholar 

  7. Buet, C., Després, B., Franck, E.: Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes. Numer. Math. 122(2), 227–278 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Campos, R.G.: Numerical simulation of reaction-diffusion telegraph systems in unbounded domains. Numer. Methods Part. D. E. 31(1), 326–335 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Cattaneo, C.A.: form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus 247, 431 (1958)

    Google Scholar 

  10. Dubey, R.S., Goswami, P., Belgacem, F.B.M.: Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms. J. Fract. Calc. Appl. 5(2), 52–58 (2014)

    MathSciNet  Google Scholar 

  11. Ehrhardt, M.: Discrete transparent boundary conditions for parabolic equations. ZAMM-Z. Angew. Math. Me. 77(2), 543–544 (1997)

    MATH  Google Scholar 

  12. Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74(5), 1765–1766 (1977)

    MathSciNet  MATH  Google Scholar 

  13. Fulks, W., Guenther, R.B.: Damped wave equations and the heat equation. Czech. Math. J. 21(4), 683–695 (1971)

    MathSciNet  MATH  Google Scholar 

  14. Gosse, L., Toscani, G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C.R. Math. 334(4), 337–342 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Han, H., Huang, Z.: A class of artificial boundary conditions for heat equation in unbounded domains. Comput. Math. Appl. 43(6–7), 889–900 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Han, H., Huang, Z.: Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Math. Appl. 44(5–6), 655–666 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Han, H., Huang, Z.: Exact artificial boundary conditions for the Schrödinger equation in \( {\mathbb{R}}^ 2\). Commun. Math. Sci. 2(1), 79–94 (2004)

    MathSciNet  Google Scholar 

  18. Han, H., Wu, X.: Artificial Boundary Method. Springer, Berlin (2013)

    MATH  Google Scholar 

  19. Han, H., Yin, D.: Absorbing boundary conditions for the multidimensional Klein–Gordon equation. Commun. Math. Sci. 5(3), 743–764 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Han, H., Yin, D., Huang, Z.: Numerical solutions of Schrödinger equations in \({\mathbb{R}}^3\). Numer. Meth Part. D. E. 23(3), 511–533 (2007)

    MATH  Google Scholar 

  21. Han, H., Ying, L.: Large elements and the local finite element method. Acta Math. Appl. Sin. 3(3), 237–249 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Han, H., Zhang, Z.: An analysis of the finite-difference method for one-dimensional Klein–Gordon equation on unbounded domain. Appl. Numer. Math 59(7), 1568–1583 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Heinen, M., Kull, H.J.: Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schrödinger equation with a localized interaction. Phys. Rev. E 79(5), 056709 (2009)

    Google Scholar 

  24. Holmes, E.E.: Are diffusion models too simple? A comparison with telegraph models of invasion. Am. Nat. 142(5), 779–795 (1993)

    Google Scholar 

  25. Jin, S., Levermore, C.D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126(2), 449–467 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Li, J.D., Gu, Y., Guo, Z.Y.: The thermal wave phenomena and analysis in the pulse-laser processing for the reduction of core loss in silicon steels. In: 4th National Conference of Thermophysics, Hongzhou, PRC (in Chinese) (1993)

  27. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Mawhin, J., Ortega, R., Robles-Pérez, A.M.: A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings. J. Math. Anal. Appl. 251(2), 695–709 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Nagy, G.B., Ortiz, O.E., Reula, O.A.: The behavior of hyperbolic heat equations’ solutions near their parabolic limits. J. Math. Phys. 35(8), 4334–4356 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Ortega, R., Robles-Perez, A.M.: A maximum principle for periodic solutions of the telegraph equation. J. Math. Anal. Appl. 221(2), 625–651 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Ozisik, M.N., Tzou, D.Y.: On the wave theory in heat conduction. J. Heat Transf. 116(3), 526–535 (1994)

    Google Scholar 

  32. Peshkov, V.: Determination of the velocity of propagation of the second sound in helium II. J. Phys. USSR 10, 389–398 (1946)

    Google Scholar 

  33. Roy, S., Vasudeva Murthy, A.S., Kudenatti, R.B.: A numerical method for the hyperbolic-heat conduction equation based on multiple scale technique. Appl. Numer. Math. 59(6), 1419–1430 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Sharifi, S., Rashidinia, J.: Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 281, 28–38 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Szeftel, J.: Absorbing boundary conditions for reaction-diffusion equations. IMA J. Appl. Math. 68, 167–184 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Szeftel, J.: Design of absorbing boundary conditions for Schrödinger equations in \({\mathbb{R}}^d\). SIAM J. Numer. Anal. 42, 1527–1551 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Vabishchevich, P.N.: Splitting schemes for hyperbolic heat conduction equation. BIT Numer. Math. 53(3), 755–778 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Van Dyke, M.: Higher approximations in boundary-layer theory part 3. parabola in uniform stream. J. Fluid Mech. 19(1), 145–159 (1964)

    MathSciNet  MATH  Google Scholar 

  39. Van Horssen, W.T., Van Der Burgh, A.H.P.: On initial boundary value problems for weakly semilinear telegraph equations. Asymptotic theory and application. SIAM J. Appl. Math. 48(4), 719–736 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes Rendus 246, 3154–3155 (1958)

    MATH  Google Scholar 

  41. Zhang, D., Peng, F., Miao, X.: A new unconditionally stable method for telegraph equation based on associated Hermite orthogonal functions. Adv. Math. Phys. 2016, 1–10 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, W., Li, C., Wu, X., Zhang, J.: High-order local artificial boundary conditions for the fractional diffusion equation on one-dimensional unbounded domain. J. Math. Study. 50(1), 28–53 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Key Research and Development Plan of China 2017YFC0601801, NSFC Project No. 11871298 and Tsinghua University Initiative Scientific Research Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Huang, Z. Transparent boundary conditions and numerical computation for singularly perturbed telegraph equation on unbounded domain. Numer. Math. 145, 345–382 (2020). https://doi.org/10.1007/s00211-020-01115-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01115-1

Mathematics Subject Classification

Navigation