Skip to main content
Log in

Exponential node clustering at singularities for rational approximation, quadrature, and PDEs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and biharmonic equations by the “lightning” method. Extensive and wide-ranging numerical experiments are involved. We then present further experiments giving evidence that in all of these applications, it is advantageous to use exponential clustering whose density on a logarithmic scale is not uniform but tapers off linearly to zero near the singularity. We propose a theoretical model of the tapering effect based on the Hermite contour integral and potential theory, which suggests that tapering doubles the rate of convergence. Finally we show that related mathematics applies to the relationship between exponential (not tapered) and doubly exponential (tapered) quadrature formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Stenger considered rational approximations of this kind, though not in this precise setting of a finite interval with just one endpoint singularity.

References

  1. Bailey, D.H., Borwein, J.: Hand-to-hand combat with thousand-digit integrals. J. Comput. Sci. 3, 77–86 (2012)

    Article  Google Scholar 

  2. Beckermann, B., Townsend, A.: Bounds on the singular values of matrices with displacement structure. SIAM Rev. 61, 319–344 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné. Mem. Acad. R. Belg. 13, 1–104 (1912)

    MATH  Google Scholar 

  4. Bernstein, S.N.: Sur la meilleure approximation de \(|x|\) par des polynômes de degrés donnés. Acta Math. 37, 1–57 (1914)

    Article  MathSciNet  Google Scholar 

  5. Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229, 8259–8280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brubeck, P.D., Trefethen, L.N.: Lightning Stokes Solver (manuscript in preparation) (2020)

  7. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide, Pafnuty Publications, Oxford. www.chebfun.org (2014)

  8. Filip, S.-I., Nakatsukasa, Y., Trefethen, L.N., Beckermann, B.: Rational minimax approximation via adaptive barycentric representations. SIAM J. Sci. Comput. 40, A2427–A2455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  10. Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. Reg. Scient. Gotting. Recent. 39–76 (1814)

  11. Gončar, A.A.: Estimates of the growth of rational functions and some of their applications. Math. USSR-Sbornik 72, 445–456 (1967)

    Article  MathSciNet  Google Scholar 

  12. Gončar, A.A.: On the rapidity of rational approximation of continuous functions with characteristic singularities. Math. USSR-Sbornik 2, 561–568 (1967)

    Article  MathSciNet  Google Scholar 

  13. Gončar, A.A.: Zolotarev problems connected with rational functions. Math. USSR-Sbornik 7, 623–635 (1969)

    Article  Google Scholar 

  14. Gopal, A., Trefethen, L.N.: Representation of conformal maps by rational functions. Numer. Math. 142, 359–382 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gopal, A., Trefethen, L.N.: Solving Laplace problems with corner singularities via rational functions. SIAM J. Numer. Anal. 57, 2074–2094 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gopal, A., Trefethen, L.N.: New Laplace and Helmholtz solvers. Proc. Nat. Acad. Sci. 116, 10223 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B., Babuška.: The \(h\)-\(p\) version of the finite element method, part 2: general results and applications. Comput. Mech. 1, 203–220 (1986)

  18. Gutknecht, M.H., Trefethen, L.N.: Nonuniqueness of best rational Chebyshev approximations on the unit disk. J. Approx. Theor. 39, 275–288 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haber, S.: The tanh rule for numerical integration. SIAM J. Numer. Anal. 14, 668–685 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ingerman, D., Druskin, V., Knizhnerman, L.: Optimal finite difference grids and rational approximations of the square root I. Elliptic problems. Commun. Pure Appl. Math. 53, 1039–1066 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula (Japanese). Kokyuroku RIMS, Kyoto U. 91, 82–119 (1970)

    MATH  Google Scholar 

  22. Lehman, R.S.: Development of the mapping function at an analytic corner. Pac. J. Math. 7, 1437–1449 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levin, E., Saff, E.B.: Potential theoretic tools in polynomial and rational approximation. In: Harmonic Analysis and Rational Approximation, Springer, pp. 71–94 (2006)

  24. Mori, M.: Discovery of the double exponential transformation and its developments. Publ. Res. Inst. Math. Sci. Kyoto (RIMS) 41, 897–935 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakatsukasa, Y., Freund, R.W.: Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations: the power of Zolotarev’s functions. SIAM Rev. 58, 461–493 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, A1494–A1522 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nakatsukasa, Y., Trefethen, L.N.: An algorithm for real and complex rational minimax approximation. SIAM J. Sci. Comput. (to appear) (2021)

  29. Newman, D.J.: Rational approximation to \(|x|\). Mich. Math. J. 11, 11–14 (1964)

    Article  Google Scholar 

  30. Okayama, T., Matsuo, T., Sugihara, M.: Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Numer. Math. 124, 361–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rakhmanov, E.A.: The Gonchar–Stahl \(\rho ^{2}\)-theorem and associated directions in the theory of rational approximations of analytic functions. Math. Sbornik 207, 57–90 (2016)

    Google Scholar 

  32. Ransford, T.: Potential Theory in the Complex Plane. CUP, Cambridge (1995)

    Book  MATH  Google Scholar 

  33. Richardson, M., Trefethen, L.N.: A sinc function analogue of Chebfun. SIAM J. Sci. Comput. 33, 2519–2535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rubin, D., Townsend, A., Wilber, H.: Bounding Zolotarev numbers using Faber rational functions. arXiv:1911.11882v2 (2020)

  35. Runge, C.: Zur Theorie der eindeutigen Analytischen Functionen. Acta Math. 6, 229–244 (1885)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  37. Schwab, Ch.: \(p\)- and \(hp\)-Finite Element Methods. Clarendon Press, Oxford (1999)

    Google Scholar 

  38. Serkh, K.: Personal communication (September 2018)

  39. Stahl, H.: General convergence results for rational approximants. In: Chui, C.K., et al. (eds.) Approximation Theory VI, pp. 605–634. Academic Press, New York (1989)

    Google Scholar 

  40. Stahl, H.: Best uniform rational approximation of \(|x|\) on \([-1,1]\). Mat. Sb. 183, 85–118 (1992)

    Google Scholar 

  41. Stahl, H.: Best uniform rational approximation of \(x^{\alpha }\) on [0,1]. Bull. Am. Math. Soc. 28, 116–122 (1993)

    Article  MathSciNet  Google Scholar 

  42. Stahl, H.: Poles and zeros of best rational approximants of \(|x|\). Constr. Approx. 10, 469–522 (1994)

    Article  MathSciNet  Google Scholar 

  43. Stahl, H.R.: Best uniform rational approximation of \(x^{\alpha }\) on \([0,1]\). Acta Math. 190, 241–306 (2003)

    Article  MathSciNet  Google Scholar 

  44. Stahl, H.R.: Sets of minimal capacity and extremal domains. arXiv:1205.3811 (2012)

  45. Starke, G.: Fejér–Walsh points for rational approximation and their use in the ADI iterative method. J. Comput. Appl. Math. 46, 129–141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stenger, F.: Explicit nearly optimal linear rational pproximation with preassigned poles. Math. Comput. 47, 225–252 (1986)

    MATH  Google Scholar 

  48. Stenger, F.: Numerical Methods based on Sinc and Analytic Functions. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  49. Suetin, S.P.: Distribution of the zeros of Padé polynomials and analytic continuation. Russ. Math. Surv. 70, 5–121 (2015)

    Article  MATH  Google Scholar 

  50. Sugihara, M.: Optimality of the double exponential formula–functional analysis approach. Numer. Math. 75, 379–395 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Takahasi, H., Mori, M.: Estimation of errors in the numerical quadrature of analytic functions. Appl. Anal. 1, 201–229 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  52. Takahasi, H., Mori, M.: Quadrature formulas obtained by variable transformation. Numer. Math. 21, 206–219 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  53. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. RIMS Kyoto 9, 721–741 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tanaka, K., Sugihara, M., Murota, K., Mori, M.: Function classes for double exponential integration formulas. Numer. Math. 111, 631–655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  56. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Trefethen, L.N.: Series solution of Laplace problems. ANZIAM J. 60, 1–26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Trefethen, L.N.: Approximation Theory and Approximation Practice, Extended edn. SIAM, Philipedia (2019)

    Book  MATH  Google Scholar 

  59. Trefethen, L.N.: Lightning Laplace Software. https://people.maths.ox.ac.uk/trefethen/ lightning (2020)

  60. Trefethen, L.N.: Numerical conformal mapping with rational functions. Comput. Methods Funct. Thy. 20, 369–387 (2020)

    Article  MathSciNet  Google Scholar 

  61. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Vyacheslavov, N.S.: On the uniform approximation of \(|x|\) by rational functions. Sov. Math. Dokl. 16, 100–104 (1975)

    MathSciNet  Google Scholar 

  63. Walsh, J.L.: Interpolation and approximation by rational functions in the complex domain. Am. Math. Soc. (1935)

  64. Wasow, W.: Asymptotic development of the solution of Dirichlet’s problem at analytic corners. Duke Math. J. 24, 47–56 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wegert, E.: Visual Complex Functions: An Introduction with Phase Portraits. Birkhäuser, Basel (2012)

    Book  MATH  Google Scholar 

  66. Widder, D.V.: Functions harmonic in a strip. Proc. Am. Math. Soc. 12, 67–71 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  67. Xie, T.F., Zhou, S.P.: The asymptotic property of approximation to \(|x|\) by Newman’s rational operators. Acta Math. Hungar. 103, 313–319 (2004)

    Article  MathSciNet  Google Scholar 

  68. Zolotarev, E.I.: Application of elliptic functions to questions of functions deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg 30, 1–59 (1877)

    Google Scholar 

Download references

Acknowledgements

We have benefited from helpful advice from Bernd Beckermann, Pablo Brubeck, Silviu Filip, Abi Gopal, Stefan Güttel, Leonid Knizhnerman, Arno Kuijlaars, Andrei Martínez-Finkelshtein, Ed Saff, Kirill Serkh, Alex Townsend, Heather Wilber, and an anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd N. Trefethen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trefethen, L.N., Nakatsukasa, Y. & Weideman, J.A.C. Exponential node clustering at singularities for rational approximation, quadrature, and PDEs. Numer. Math. 147, 227–254 (2021). https://doi.org/10.1007/s00211-020-01168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01168-2

Mathematics Subject Classification