Abstract
Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and biharmonic equations by the “lightning” method. Extensive and wide-ranging numerical experiments are involved. We then present further experiments giving evidence that in all of these applications, it is advantageous to use exponential clustering whose density on a logarithmic scale is not uniform but tapers off linearly to zero near the singularity. We propose a theoretical model of the tapering effect based on the Hermite contour integral and potential theory, which suggests that tapering doubles the rate of convergence. Finally we show that related mathematics applies to the relationship between exponential (not tapered) and doubly exponential (tapered) quadrature formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play.














Similar content being viewed by others
Notes
Stenger considered rational approximations of this kind, though not in this precise setting of a finite interval with just one endpoint singularity.
References
Bailey, D.H., Borwein, J.: Hand-to-hand combat with thousand-digit integrals. J. Comput. Sci. 3, 77–86 (2012)
Beckermann, B., Townsend, A.: Bounds on the singular values of matrices with displacement structure. SIAM Rev. 61, 319–344 (2019)
Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné. Mem. Acad. R. Belg. 13, 1–104 (1912)
Bernstein, S.N.: Sur la meilleure approximation de \(|x|\) par des polynômes de degrés donnés. Acta Math. 37, 1–57 (1914)
Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229, 8259–8280 (2010)
Brubeck, P.D., Trefethen, L.N.: Lightning Stokes Solver (manuscript in preparation) (2020)
Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide, Pafnuty Publications, Oxford. www.chebfun.org (2014)
Filip, S.-I., Nakatsukasa, Y., Trefethen, L.N., Beckermann, B.: Rational minimax approximation via adaptive barycentric representations. SIAM J. Sci. Comput. 40, A2427–A2455 (2018)
Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)
Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. Reg. Scient. Gotting. Recent. 39–76 (1814)
Gončar, A.A.: Estimates of the growth of rational functions and some of their applications. Math. USSR-Sbornik 72, 445–456 (1967)
Gončar, A.A.: On the rapidity of rational approximation of continuous functions with characteristic singularities. Math. USSR-Sbornik 2, 561–568 (1967)
Gončar, A.A.: Zolotarev problems connected with rational functions. Math. USSR-Sbornik 7, 623–635 (1969)
Gopal, A., Trefethen, L.N.: Representation of conformal maps by rational functions. Numer. Math. 142, 359–382 (2019)
Gopal, A., Trefethen, L.N.: Solving Laplace problems with corner singularities via rational functions. SIAM J. Numer. Anal. 57, 2074–2094 (2019)
Gopal, A., Trefethen, L.N.: New Laplace and Helmholtz solvers. Proc. Nat. Acad. Sci. 116, 10223 (2019)
Guo, B., Babuška.: The \(h\)-\(p\) version of the finite element method, part 2: general results and applications. Comput. Mech. 1, 203–220 (1986)
Gutknecht, M.H., Trefethen, L.N.: Nonuniqueness of best rational Chebyshev approximations on the unit disk. J. Approx. Theor. 39, 275–288 (1983)
Haber, S.: The tanh rule for numerical integration. SIAM J. Numer. Anal. 14, 668–685 (1977)
Ingerman, D., Druskin, V., Knizhnerman, L.: Optimal finite difference grids and rational approximations of the square root I. Elliptic problems. Commun. Pure Appl. Math. 53, 1039–1066 (2000)
Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula (Japanese). Kokyuroku RIMS, Kyoto U. 91, 82–119 (1970)
Lehman, R.S.: Development of the mapping function at an analytic corner. Pac. J. Math. 7, 1437–1449 (1957)
Levin, E., Saff, E.B.: Potential theoretic tools in polynomial and rational approximation. In: Harmonic Analysis and Rational Approximation, Springer, pp. 71–94 (2006)
Mori, M.: Discovery of the double exponential transformation and its developments. Publ. Res. Inst. Math. Sci. Kyoto (RIMS) 41, 897–935 (2005)
Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)
Nakatsukasa, Y., Freund, R.W.: Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations: the power of Zolotarev’s functions. SIAM Rev. 58, 461–493 (2016)
Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, A1494–A1522 (2018)
Nakatsukasa, Y., Trefethen, L.N.: An algorithm for real and complex rational minimax approximation. SIAM J. Sci. Comput. (to appear) (2021)
Newman, D.J.: Rational approximation to \(|x|\). Mich. Math. J. 11, 11–14 (1964)
Okayama, T., Matsuo, T., Sugihara, M.: Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Numer. Math. 124, 361–394 (2013)
Rakhmanov, E.A.: The Gonchar–Stahl \(\rho ^{2}\)-theorem and associated directions in the theory of rational approximations of analytic functions. Math. Sbornik 207, 57–90 (2016)
Ransford, T.: Potential Theory in the Complex Plane. CUP, Cambridge (1995)
Richardson, M., Trefethen, L.N.: A sinc function analogue of Chebfun. SIAM J. Sci. Comput. 33, 2519–2535 (2011)
Rubin, D., Townsend, A., Wilber, H.: Bounding Zolotarev numbers using Faber rational functions. arXiv:1911.11882v2 (2020)
Runge, C.: Zur Theorie der eindeutigen Analytischen Functionen. Acta Math. 6, 229–244 (1885)
Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)
Schwab, Ch.: \(p\)- and \(hp\)-Finite Element Methods. Clarendon Press, Oxford (1999)
Serkh, K.: Personal communication (September 2018)
Stahl, H.: General convergence results for rational approximants. In: Chui, C.K., et al. (eds.) Approximation Theory VI, pp. 605–634. Academic Press, New York (1989)
Stahl, H.: Best uniform rational approximation of \(|x|\) on \([-1,1]\). Mat. Sb. 183, 85–118 (1992)
Stahl, H.: Best uniform rational approximation of \(x^{\alpha }\) on [0,1]. Bull. Am. Math. Soc. 28, 116–122 (1993)
Stahl, H.: Poles and zeros of best rational approximants of \(|x|\). Constr. Approx. 10, 469–522 (1994)
Stahl, H.R.: Best uniform rational approximation of \(x^{\alpha }\) on \([0,1]\). Acta Math. 190, 241–306 (2003)
Stahl, H.R.: Sets of minimal capacity and extremal domains. arXiv:1205.3811 (2012)
Starke, G.: Fejér–Walsh points for rational approximation and their use in the ADI iterative method. J. Comput. Appl. Math. 46, 129–141 (1993)
Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)
Stenger, F.: Explicit nearly optimal linear rational pproximation with preassigned poles. Math. Comput. 47, 225–252 (1986)
Stenger, F.: Numerical Methods based on Sinc and Analytic Functions. Springer, Berlin (1993)
Suetin, S.P.: Distribution of the zeros of Padé polynomials and analytic continuation. Russ. Math. Surv. 70, 5–121 (2015)
Sugihara, M.: Optimality of the double exponential formula–functional analysis approach. Numer. Math. 75, 379–395 (1997)
Takahasi, H., Mori, M.: Estimation of errors in the numerical quadrature of analytic functions. Appl. Anal. 1, 201–229 (1971)
Takahasi, H., Mori, M.: Quadrature formulas obtained by variable transformation. Numer. Math. 21, 206–219 (1973)
Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. RIMS Kyoto 9, 721–741 (1974)
Tanaka, K., Sugihara, M., Murota, K., Mori, M.: Function classes for double exponential integration formulas. Numer. Math. 111, 631–655 (2009)
Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)
Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)
Trefethen, L.N.: Series solution of Laplace problems. ANZIAM J. 60, 1–26 (2018)
Trefethen, L.N.: Approximation Theory and Approximation Practice, Extended edn. SIAM, Philipedia (2019)
Trefethen, L.N.: Lightning Laplace Software. https://people.maths.ox.ac.uk/trefethen/ lightning (2020)
Trefethen, L.N.: Numerical conformal mapping with rational functions. Comput. Methods Funct. Thy. 20, 369–387 (2020)
Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)
Vyacheslavov, N.S.: On the uniform approximation of \(|x|\) by rational functions. Sov. Math. Dokl. 16, 100–104 (1975)
Walsh, J.L.: Interpolation and approximation by rational functions in the complex domain. Am. Math. Soc. (1935)
Wasow, W.: Asymptotic development of the solution of Dirichlet’s problem at analytic corners. Duke Math. J. 24, 47–56 (1957)
Wegert, E.: Visual Complex Functions: An Introduction with Phase Portraits. Birkhäuser, Basel (2012)
Widder, D.V.: Functions harmonic in a strip. Proc. Am. Math. Soc. 12, 67–71 (1961)
Xie, T.F., Zhou, S.P.: The asymptotic property of approximation to \(|x|\) by Newman’s rational operators. Acta Math. Hungar. 103, 313–319 (2004)
Zolotarev, E.I.: Application of elliptic functions to questions of functions deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg 30, 1–59 (1877)
Acknowledgements
We have benefited from helpful advice from Bernd Beckermann, Pablo Brubeck, Silviu Filip, Abi Gopal, Stefan Güttel, Leonid Knizhnerman, Arno Kuijlaars, Andrei Martínez-Finkelshtein, Ed Saff, Kirill Serkh, Alex Townsend, Heather Wilber, and an anonymous referee.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Trefethen, L.N., Nakatsukasa, Y. & Weideman, J.A.C. Exponential node clustering at singularities for rational approximation, quadrature, and PDEs. Numer. Math. 147, 227–254 (2021). https://doi.org/10.1007/s00211-020-01168-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-020-01168-2