Skip to main content
Log in

The effect of quadrature rules on finite element solutions of Maxwell variational problems

Consistency estimates on meshes with straight and curved elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdulle, A., Vilmart, G.: A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems. Numerische Mathematik 121(3), 397–431 (2012)

    Article  MathSciNet  Google Scholar 

  2. Aylwin, R., Jerez-Hanckes, C., Schwab, C., Zech, J.: Domain uncertainty quantification in computational electromagnetics. SIAM/ASA J. Uncertainty Quantification 8(1), 301–341 (2020)

    Article  MathSciNet  Google Scholar 

  3. Banerjee, U.: A note on the effect of numerical quadrature in finite element eigenvalue approximation. Numerische Mathematik 61(1), 145–152 (1992)

    Article  MathSciNet  Google Scholar 

  4. Banerjee, U., Osborn, J.E.: Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numerische Mathematik 56(8), 735–762 (1989)

    Article  MathSciNet  Google Scholar 

  5. Banerjee, U., Suri, M.: The effect of numerical quadrature in the p-version of the finite element method. Math. Comput. 59(199), 1–20 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Bhattacharyya, P.K., Nataraj, N.: On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients. ESAIM: Math. Model. Numer.1 Anal. 33(4), 807–836 (1999)

    Article  MathSciNet  Google Scholar 

  7. Buffa, A., Costabel, M., Sheen, D.: On traces for \(\mathbf{H}(\mathbf{curl},\varOmega )\) in Lipschitz domains. J. Math. Anal. Appl. 276(2), 845–867 (2002)

    Article  MathSciNet  Google Scholar 

  8. Buffa, A., Hiptmair, R.: Galerkin boundary element methods for electromagnetic scattering. In: Topics in computational wave propagation, volume 31 of Lecture Notes in Computational Science and Engineering, pp. 83–124. Springer, Berlin (2003)

  9. Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numerische Mathematik 95(3), 459–485 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Finite Element Methods (Part 1), volume 2 of Handbook of Numerical Analysis, pp. 17–351. Elsevier (1991)

  11. Ciarlet, P. G., Raviart, P.-A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 409–474. Elsevier (1972)

  12. Ciarlet, P.G.: The finite element method for elliptic problems. Society for Industrial and Applied Mathematics (2002)

  13. Di Pietro, D.A., Droniou, Jérôme: A third strang lemma and an aubin-nitsche trick for schemes in fully discrete formulation. Calcolo 55(3), 40 (2018)

    Article  MathSciNet  Google Scholar 

  14. Dular, P., Geuzaine, C.: GetDP reference manual: the documentation for GetDP, a general environment for the treatment of discrete problems. http://getdp.info

  15. Ern, A., Guermond, J.L.: Theory and practice of finite elements, vol. 159. Springer Science & Business Media (2004)

  16. Ern, A., Guermond, J.L.: Finite element quasi-interpolation and best approximation. Mathematical Modelling and Numerical Analysis 51(4), 1367–1385 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ern, A., Guermond, J.L.: Analysis of the edge finite element approximation of the maxwell equations with low regularity solutions. Computers & Mathematics with Applications 75(3), 918–932 (2018)

    Article  MathSciNet  Google Scholar 

  18. Geuzaine, C., Meys, B., Dular, P., Legros, W.: Convergence of high order curl-conforming finite elements [for em field calculations]. IEEE Trans. Magn. 35(3), 1442–1445 (1999)

    Article  Google Scholar 

  19. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  20. Hernández, E., Rodríguez, R.: Finite element approximation of spectral problems with neumann boundary conditions on curved domains. Math. Comput. 72(243), 1099–1115 (2003)

    Article  MathSciNet  Google Scholar 

  21. Jerez-Hanckes, C., Schwab, C., Zech, J.: Electromagnetic wave scattering by random surfaces: Shape holomorphy. Mathematical Models and Methods in Applied Sciences 27(12), 2229–2259 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23(3), 562–580 (1986)

    Article  MathSciNet  Google Scholar 

  23. Monk, P.: Finite element methods for Maxwell’s equations. Oxford University Press (2003)

  24. Sauter, S. A., Schwab, C.: Boundary element methods, volume 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2011. Translated and expanded from the 2004 German original

  25. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer Science & Business Media (2007)

  26. Tartar, L.: An introduction to Sobolev spaces and interpolation spaces, vol. 3. Springer Science & Business Media (2007)

  27. Vanmaele, M., Ženíšek, A.: The combined effect of numerical integration and approximation of the boundary in the finite element method for eigenvalue problems. Numerische Mathematik 71(2), 253–273 (1995)

    Article  MathSciNet  Google Scholar 

  28. Webb, J.P.: Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propag. 47(8), 1244–1253 (1999)

    Article  MathSciNet  Google Scholar 

  29. Webb, J.P., Forgahani, B.: Hierarchal scalar and vector tetrahedra. IEEE Trans. Magn. 29(2), 1495–1498 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Jerez-Hanckes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by Fondecyt Regular 1171491 and doctoral grant Conicyt-PFCHA 2017-21171791.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aylwin, R., Jerez-Hanckes, C. The effect of quadrature rules on finite element solutions of Maxwell variational problems. Numer. Math. 147, 903–936 (2021). https://doi.org/10.1007/s00211-021-01186-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01186-8

Mathematics Subject Classification

Navigation