Skip to main content
Log in

Preconditioning high order \(H^2\) conforming finite elements on triangles

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We develop a nonoverlapping Additive Schwarz Preconditioner for the p-version finite element with \(H^2\)-conforming elements on triangles based on Argyris elements. With a particular choice of basis functions corresponding to the \(C^2\) degrees of freedom (dofs), we give a preconditioner consisting of eliminating the interior dofs, global solves of the \(C^0\) and \(C^1\) vertex dofs, diagonal solves of the \(C^2\) vertex dofs, and block diagonal solves of the edge dofs. We show that the condition number of the preconditioner system grows at most like \({\mathscr {O}}(1+\log ^3 p)\) independent of the mesh size h. The analysis permits the use of inexact interior solves which lends itself to a more efficient implementation while maintaining the same \({\mathscr {O}}(1 + \log ^3 p)\) asymptotic growth of the preconditioned system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ainsworth, M.: A preconditioner based on domain decomposition for h-p finite-element approximation on quasi-uniform meshes. SIAM J. Numer. Anal. 33(4), 1358–1376 (1996)

    Article  MathSciNet  Google Scholar 

  2. Ainsworth, M., Jiang, S.: Preconditioning the mass matrix for high order finite element approximation on triangles. SIAM J. Numer. Anal. 57(1), 355–377 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M., Parker, C.: \(H^2\)-stable polynomial liftings on triangles. SIAM J. Numer. Anal. 58(3), 1867–1892 (2020)

    Article  MathSciNet  Google Scholar 

  4. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. 72(692), 701–709 (1968)

    Article  Google Scholar 

  5. Babuška, I., Craig, A., Mandel, J., Pitkäranta, J.: Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28(3), 624–661 (1991)

    Article  MathSciNet  Google Scholar 

  6. Bartels, S.: Numerical Approximation of Partial Differential Equations, vol. 64. Springer, New York (2016)

    Book  Google Scholar 

  7. Bernadou, M., Boisserie, J.M.: The Finite Element Method in Thin Shell Theory: Application to Arch Dam Simulations. Springer, New York (1982)

    Book  Google Scholar 

  8. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the sobolev world (2007). https://hal.archives-ouvertes.fr/hal-00153795/file/BeDaMa07b.pdf

  9. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring. I. Math. Comput. 47(175), 103–134 (1986)

    Article  MathSciNet  Google Scholar 

  10. Bramble, J.H., Zhang, X.: Multigrid methods for the biharmonic problem discretized by conforming \(C^1\) finite elements on nonnested meshes. Numer. Funct. Anal. Optim. 16(7–8), 835–846 (1995)

    Article  MathSciNet  Google Scholar 

  11. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  12. Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. Acta numer. 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, vol. 40. Siam, Philadelphia (2002)

    Book  Google Scholar 

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 5. Springer, New York (2012)

    MATH  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 69. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  16. Landau, L., Lifshitz, E., Sykes, J., Reid, W., Dill, E.H.: Theory of elasticity: vol. 7 of course of theoretical physics. Phys. Today 13, 44 (1960)

    Article  Google Scholar 

  17. Morgan, J., Scott, R.: A nodal basis for \(c^1\) piecewise polynomials of degree \(n \ge 5\). Math. Comput. 29(131), 736–740 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Necas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, New York (2011)

    Google Scholar 

  19. Pestana, J., Muddle, R., Heil, M., Tisseur, F., Mihajlovic, M.: Efficient block preconditioning for a \(C^1\) finite element discretization of the Dirichlet biharmonic problem. SIAM J. Sci. Comput. 38(1), A325–A345 (2016)

    Article  Google Scholar 

  20. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, New York (1977)

    Chapter  Google Scholar 

  21. Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  22. Suri, M.: The \( p \)-version of the finite element method for elliptic equations of order \(2 l\). ESAIM Math. Model. Numer. Anal-Modél. Math. Anal. Numérique 24(2), 265–304 (1990)

    Article  MathSciNet  Google Scholar 

  23. Szegö, G.: Orthogonal Polynomials. American Mathematical Soc, Rhode Island (1939)

    MATH  Google Scholar 

  24. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-hill, New York (1959)

    MATH  Google Scholar 

  25. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory, vol. 34. Springer, New York (2006)

    MATH  Google Scholar 

  26. Zhang, X.: Studies in domain decomposition: multi-level methods and the biharmonic dirichlet problem. Ph.D. thesis, New York Univeristy: Courant Institute of Mathematical Sciences (1991)

  27. Zhang, X.: Multilevel Schwarz methods for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 15(3), 621–644 (1994)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X.: Two-level Schwarz methods for the biharmonic problem discretized conforming \(C^1\) elements. SIAM J. Numer. Anal. 33(2), 555–570 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ainsworth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A \(H^2\) Polynomial extensions

Let \(I = (0,1)\). We use the standard Sobolev spaces \(H^s(I)\), \(s \in {\mathbb {N}}\), where \(H^0(I) = L^2(I)\). For spaces of vector fields we use \({\varvec{H}}^s(I)\). We shall also need the fractional order spaces \(H^{1/2}(I)\), \(H^{1/2}_{00}(I)\), \(H^{3/2}(I)\), and \(H^{3/2}_{00}(I)\) equipped with the norms

$$\begin{aligned} \Vert u\Vert _{H^{1/2}(I)}^2&:= \Vert u\Vert _{L^2(I)}^2 + |u|_{H^{1/2}(I)}^2 \\ |u|_{H^{1/2}(I)}^2&:= \int _{0}^{1} \int _{0}^{1} \left| \frac{u(x) - u(y)}{x-y} \right| ^2 \ dx \ dy, \\ \Vert u\Vert _{H^{1/2}_{00}(I)}^2&:= \Vert u\Vert _{H^{1/2}(I)}^2 + |u|_{H^{1/2}_{00}(I)}^2 \\ |u|_{H^{1/2}_{00}(I)}^2&:= 2\int _{0}^{1} \frac{u^2(x)}{x} \ dx + 2 \int _{0}^{1} \frac{u^2(x)}{1-x} \ dx, \\ \Vert u\Vert _{H^{3/2}(I)}^2&:= \Vert u\Vert _{L^2(I)}^2 + \Vert u'\Vert _{H^{1/2}(I)}^2 \\ \Vert u\Vert _{H^{3/2}_{00}(I)}^2&:= \Vert u\Vert _{L^2(I)}^2 + \Vert u'\Vert _{H^{1/2}_{00}(I)}^2. \\ \end{aligned}$$

The corresponding spaces \(H^{s}(\gamma )\) and \({\varvec{H}}^{s}(\gamma )\) are defined on an element edge \(\gamma \in \{ \gamma _1, \gamma _2, \gamma _3 \}\) in a similar fashion.

For a function f defined on \(\partial K\), we denote \(f_i = f|_{\gamma _i}\) where the edge \(\gamma _i\) is parameterized by arc length in the tangential direction. The following norm equivalence [15] holds on \(H^{1/2}(\partial K)\), the space traces of \(H^1(K)\) functions,

$$\begin{aligned} \Vert f\Vert _{H^{1/2}(\partial K)}^2&:= \inf _{ \begin{array}{c} w \in H^1(K) \\ w|_{\partial K} = f \end{array}} \Vert w\Vert _{H^1(K)}^2 \approx \Vert f\Vert _{L^2(\partial K)}^2 + |f|_{H^{1/2}(\partial K)}^2 \end{aligned}$$

where

$$\begin{aligned} |f|_{H^{1/2}(\partial K)}^2&= \sum _{i=1}^{3} \left( |f_i|_{H^{1/2}(\gamma _i)}^2 + \int _{0}^{\delta } \frac{ | f_i(|\gamma _i|-t) - f_{i+1}(t)|^2 }{t} \ dt \right) , \end{aligned}$$

and \(\delta = \min _{i\in \{ 1,2,3 \} }(|\gamma _i|)\). We define \({\varvec{H}}^{1/2}(\partial K)\) analogously.

In order to show the existence of functions satisfying (3.7) and hence complete the proof of (4.2), we need the following consequence of [3, Corollary 2.3]:

Corollary A.1

Let \(f,g : \partial K \rightarrow {\mathbb {R}}\) be such that \(f_i \in {\mathbb {P}}_p(\gamma _i)\) and \(g_i \in {\mathbb {P}}_{p-1}(\gamma _i)\) for \(p \ge 1\). Assume further that f and g satisfy the compatibility conditions at the vertices:

$$\begin{aligned} f_{i+1}(n_{i+2})&= f_{i}(n_{i+2}) \\ \partial _t f_{i+1}(n_{i+2})&= -\cos \theta _{i+2} \partial _t f_{i}(n_{i+2}) - \sin \theta _{i+2} g_i(n_{i+2}) \\ g_{i+1}(n_{i+2})&= \sin \theta _{i+2} \partial _t f_i(n_{i+2}) - \cos \theta _{i+2} g_i(n_{i+2}) \\ \partial _t g_{i+1}(n_{i+2})&= \cot \theta _{i+2} \partial _{tt} f_{i+1}(n_{i+2}) -\cot \theta _{i+2} \partial _{tt} f_i(n_{i+2}) - \partial _t g_i(n_{i+2}). \end{aligned}$$

for \(i \in \{1,2,3\}\). Then, there exists a polynomial \(U \in {\mathbb {P}}_p(K)\) such that

  1. 1.

    U has trace (fg): \(U |_{\gamma _i} = f_i\), \(\partial _n U |_{\gamma _i} = g_i\), and

  2. 2.

    U depends continuously on f and g:

    $$\begin{aligned} \begin{aligned}&h_K^{-1} \Vert U\Vert _{L^2(K)} + |U|_{H^1(K)} + h_K |U|_{H^2(K)} \\&\qquad \le C \left( h_K^{-1/2} \Vert f\Vert _{L^2(\partial K)} + h_{K}^{1/2} \Vert {\varvec{\sigma }}(f,g) \Vert _{L^2(\partial K)} + h_K|{\varvec{\sigma }}(f,g)|_{H^{1/2}(\partial K)} \right) \end{aligned} \end{aligned}$$
    (A.1)

    where \( {\varvec{\sigma }}(f,g) = (\partial _t f) {\varvec{n}} - g {\varvec{t}},\) and C is independent of p and \(h_K\).

Proof

The existence of a polynomial U satisfying the required conditions is given by [3, Corollary 2.3] where the estimate (A.1) is also established in the case \(h_K = 1\). Employing the usual scaling argument gives the estimate (A.1). \(\square \)

B Auxilliary univariate polynomials

The following lemma defines some univariate functions which are later used to construct \(C^2\) vertex functions satisfying the condition (3.7).

Lemma B.1

Let \(m,p \in {\mathbb {N}}\), \(\beta > -1\). Define \(\gamma := 2m-1+\beta \) and

$$\begin{aligned} \psi _{p,m,\beta }(x) := \left( \frac{1-x}{2} \right) \left( \frac{1 - x^2}{2} \right) ^{m-1} P_{p}^{(\gamma ,\gamma )}(x). \end{aligned}$$

Then, \(\psi _{p,m,\beta }^{(j)}(\pm 1) = 0\) for \(j = 0, 1, \ldots , m-2\), \(\psi _{p,m,\beta }^{(m-1)}(1) = 0\), and \(\psi _{p,m,\beta }^{(m-1)}(-1) \ne 0\). Moreover,

$$\begin{aligned} \frac{ 1 }{ \psi _{p,m,\beta }^{(m-1)}(-1)^2 } \int _{-1}^{1} \left( 1-x^2\right) ^{\beta } \psi _{p,m,\beta }(x)^2 \ dx&\le \frac{ 2^{2m-1-2\beta } \varGamma (\gamma +1) \varGamma (\gamma ) p! }{ (m-1)! (m-1)! \varGamma (p+2\gamma +1) } \\&\sim p^{-2(2m-1+\beta )}. \end{aligned}$$

Proof

Let \(\psi _p := \psi _{p,m,\beta }\). We first bound

$$\begin{aligned} 4^{\beta } \int _{-1}^{1} \left( \frac{1-x^2}{4}\right) ^{\beta } \psi _p(x)^2 \ dx&= \int _{-1}^{1} \left( \frac{1-x}{2} \right) ^{\gamma + 1} \left( \frac{1+x}{2} \right) ^{\gamma - 1} P_p^{(\gamma , \gamma )}(x)^2 \ dx \\&\le \int _{-1}^{1} \left( \frac{1-x}{2} \right) ^{\gamma } \left( \frac{1-x}{2} \right) ^{\gamma -1} P_p^{(\gamma , \gamma )}(x)^2 \ dx \\&=: Q_p. \end{aligned}$$

Now, using the identity [23, p. 4]:

$$\begin{aligned}&(2p + 2\gamma - 1) P_{p}^{(\gamma ,\gamma - 1)} = (p+2\gamma )P_p^{(\gamma ,\gamma )} + (p+\gamma )P_{p-1}^{(\gamma ,\gamma )} \end{aligned}$$

we get

$$\begin{aligned} P_p^{(\gamma ,\gamma )} = \mu _p P_p^{(\gamma ,\gamma -1)} - \nu _p P_{p-1}^{(\gamma ,\gamma )} \end{aligned}$$

with

$$\begin{aligned} \mu _p = \frac{2(p+\gamma )}{p+2\gamma }, \quad \nu _p = \frac{p+\gamma }{p+2\gamma }. \end{aligned}$$

Using this identity and orthogonality, there holds

$$\begin{aligned} Q_p&= \nu _p^2 \int _{-1}^{1} \left( \frac{1-x}{2} \right) ^{\gamma } \left( \frac{1+x}{2} \right) ^{\gamma -1} P_{p-1}^{(\gamma ,\gamma )}(x)^2 \ dx \nonumber \\&\qquad + \mu _p^2 \int _{-1}^{1} \left( \frac{1-x}{2} \right) ^{\gamma } \left( \frac{1+x}{2} \right) ^{\gamma -1} P_p^{(\gamma ,\gamma -1)}(x)^2 \ dx \nonumber \\&=: \nu _p^2 Q_{p-1} + \mu _p^2 T_p. \end{aligned}$$
(B.1)

First note that

$$\begin{aligned} T_p = \frac{1}{p+\gamma } \frac{\varGamma (p+\gamma +1) \varGamma (p+\gamma ) }{ \varGamma (p+2\gamma ) p! } = \frac{ \varGamma (p+\gamma )^2 }{ \varGamma (p+2\gamma ) p! }. \end{aligned}$$

We now claim

$$\begin{aligned} Q_p \le \frac{\varGamma (p+\gamma + 1)^2 }{ \varGamma (p+2\gamma +1)! p! } \cdot \frac{2}{\gamma }. \end{aligned}$$
(B.2)

For \(p = 0\), we have

$$\begin{aligned} Q_0 = \int _{-1}^{1} \left( \frac{1-x}{2} \right) ^{\gamma } \left( \frac{1+x}{2} \right) ^{\gamma -1} \ dx = \frac{ \varGamma (\gamma )^2 }{ \varGamma (2\gamma ) p! }, \end{aligned}$$

and (B.2) holds as an equality in the case \(p = 0\).

Now suppose the result holds true for \(p = q-1\). Then, by (B.1),

$$\begin{aligned} (q + 2\gamma )^2 Q_q = (q + \gamma )^2 Q_{q-1} + 4(q+\gamma )^2 T_q. \end{aligned}$$

Direct computation gives

$$\begin{aligned} Q_q&\le \frac{(q+\gamma )^2}{ (q+2\gamma )^2 } \cdot \frac{\varGamma (q+\gamma )^2}{ \varGamma (q+2\gamma ) q! } \cdot \frac{2}{\gamma } \left( q + 2\gamma \right) = \frac{ \varGamma (q+\gamma +1)^2 }{ \varGamma (q+2\gamma +1) q! } \cdot \frac{2}{\gamma } \end{aligned}$$

and (B.2) follows by induction.

Again using identities from [23, p. 4]

$$\begin{aligned} \psi _p^{(m-1)}(-1) = \frac{(m-1)!}{2^{m-1}} P_p^{(\gamma ,\gamma )}(-1) = \frac{(-1)^p (m-1)! \varGamma (p+\gamma +1)}{2^{m-1} \varGamma (\gamma +1) p! }. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{1}{ \psi _p^{(m-1)}(-1)^2 } \int _{-1}^{1} (1-x^2)^{\beta } \psi _p(x)^2 \ dx&= 2^{2m-1-2\beta } \frac{\varGamma (\gamma +1) \varGamma (\gamma ) p! }{ (m-1)! (m-1)! \varGamma (p+2\gamma +1) }. \end{aligned}$$

By Stirling’s formula, \(\frac{p!}{\varGamma (p+2\gamma +1)} \sim p^{-2(2m-1+\beta )}\). \(\square \)

C Traces of \(C^2\) vertex functions

Thanks to Corollary A.1, we only need to specify the boundary values of \(\varPhi _{n_i}^{\alpha }\) on each \(K \in {\mathscr {T}}\). We summarize them below: First, we label a general element K as in Fig. 1. Let \(F : [-1,1] \rightarrow {\mathbb {R}}\) and \(G : [-1,1] \rightarrow {\mathbb {R}}\) be given by

$$\begin{aligned} F(t) = \frac{\psi _{p-5,3,0}(t)}{\psi ''_{p-5,3,0}(-1)} \qquad \text {and} \qquad G(t) = \frac{\psi _{p-4,2,0}(t)}{\psi _{p-4,2,0}'(-1)}, \end{aligned}$$

where \(\psi _{p,m,\beta }\) is given by Lemma B.1. Now, we define the traces f and g as follows: \(\alpha = (2,0)\):

$$\begin{aligned} \begin{aligned} f_{i}(t)&= 0 \\ g_{i}(t)&= 0 \\ f_{i+1}(t)&= \frac{1}{4} |\gamma _{i+1}|^2 \left( t_{i+1}^x\right) ^2 F\left( 1- \frac{2t }{|\gamma _{i+1}|} \right) \\ g_{i+1}(t)&= -\frac{1}{2} |\gamma _{i+1}| t_{i+1}^x n_{i+1}^x G\left( 1-\frac{ 2t }{|\gamma _{i+1}|} \right) \\ f_{i+2}(t)&= \frac{1}{4} |\gamma _{i+2}|^2 \left( t_{i+2}^x\right) ^2 F\left( \frac{ 2t }{|\gamma _{i+2}|} - 1 \right) \\ g_{i+2}(t)&= \frac{1}{2} |\gamma _{i+2}| t_{i+2}^x n_{i+2}^x G\left( \frac{ 2t }{|\gamma _{i+2}|} - 1 \right) \end{aligned} \end{aligned}$$
(C.1)

\(\alpha = (1,1)\):

$$\begin{aligned}&\begin{aligned} f_i(t)&= 0 \\ g_i(t)&= 0 \\ f_{i+1}(t)&= \frac{1}{2} |\gamma _{i+1}|^2 t_{i+1}^x t_{i+1}^y F\left( 1- \frac{2t }{|\gamma _{i+1}|} \right) \\ g_{i+1}(t)&= -\frac{1}{2} |\gamma _{i+1}| \left( t_{i+1}^x n_{i+1}^y + t_{i+1}^y n_{i+1}^x\right) G\left( 1- \frac{2t }{|\gamma _{i+1}|} \right) . \\ f_{i+2}(t)&= \frac{1}{2} |\gamma _{i+2}|^2 t_{i+2}^x t_{i+2}^y F\left( \frac{ 2t }{|\gamma _{i+2}|} - 1 \right) \\ g_{i+2}(t)&= \frac{1}{2} |\gamma _{i+2}| \left( t_{i+2}^x n_{i+2}^y + t_{i+2}^y n_{i+2}^x\right) G\left( \frac{ 2t }{|\gamma _{i+2}|} - 1 \right) . \\ \end{aligned} \end{aligned}$$
(C.2)

\(\alpha = (0,2)\):

$$\begin{aligned}&\begin{aligned} f_i(t)&= 0 \\ g_i(t)&= 0 \\ f_{i+1}(t)&= \frac{1}{4} |\gamma _{i+1}|^2 (t_{i+1}^y)^2 F\left( 1- \frac{2t }{|\gamma _{i+1}|} \right) \\ g_{i+1}(t)&= -\frac{1}{2} |\gamma _{i+1}| t_{i+1}^y n_{i+1}^y G\left( 1- \frac{2t }{|\gamma _{i+1}|} \right) . \\ f_{i+2}(t)&= \frac{1}{4} |\gamma _{i+2}|^2 \left( t_{i+2}^y\right) ^2 F\left( \frac{ 2t }{|\gamma _{i+2}|} - 1\right) \\ g_{i+2}(t)&= \frac{1}{2} |\gamma _{i+2}| t_{i+2}^y n_{i+2}^y G\left( \frac{ 2t }{|\gamma _{i+2}|} - 1 \right) . \end{aligned} \end{aligned}$$
(C.3)

Since F and G vanish to order 2 and 1, respectively, f and g satisfy the compatibility conditions in Corollary A.1. Let \({\bar{\varPhi }}_{n_i}^{\alpha }\) be the extension of f and g given by Corollary A.1. First note that we have the desired interpolation properties:

$$\begin{aligned} D^{\beta } {\bar{\varPhi }}_{n_i}^{\alpha }(n_j) = \delta _{\alpha \beta } \delta _{ij} \end{aligned}$$

for all \(|\beta | \le 2\) and \(n_j \in {\mathscr {N}}\). Moreover, for \(m \in \{0,1,2\}\) there holds,

$$\begin{aligned} h_K^{m-1} |{\bar{\varPhi }}_{n_i}^{\alpha }|_{H^m(K)}&\le C \sum _{i=2}^{3} \bigg \{ h_{K}^{-1/2} \Vert f_i\Vert _{L^2(\gamma _i)} + h_{K}^{1/2} \left( |f_i|_{H^1(\gamma _i)} + \Vert g_i\Vert _{L^2(\gamma _i)} \right) \\&\quad + h_K \left( \left| f_i'\right| _{H^{1/2}_{00}(\gamma _i)} + |g_i|_{H^{1/2}_{00}(\gamma _i)} \right) \bigg \} \\&\le C h_K^2 \left( \Vert F\Vert _{H^{3/2}_{00}(-1,1)} + \Vert G\Vert _{H^{1/2}_{00}(-1,1)} \right) . \end{aligned}$$

Now, thanks to inverse estimates [8] and Lemma B.1, we have

$$\begin{aligned} \Vert F\Vert _{H^k(-1,1)} + \Vert G\Vert _{H^{k-1}(-1,1)} \le C p^{2k} \left( \Vert F\Vert _{L^2(-1,1)} + p^{-2}\Vert G\Vert _{L^{2}(-1,1)} \right) \le C p^{-5+2k}. \end{aligned}$$

By interpolation,

$$\begin{aligned} |{\bar{\varPhi }}_{n_i}^{\alpha }|_{H^m(K)}&\le C h_K^{3-m} \left( \Vert F\Vert _{H^{3/2}_{00}(-1,1)} + \Vert G\Vert _{H^{1/2}_{00}(-1,1)} \right) \le C \frac{h_K^{3-m}}{p^2}. \end{aligned}$$
(C.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ainsworth, M., Parker, C. Preconditioning high order \(H^2\) conforming finite elements on triangles. Numer. Math. 148, 223–254 (2021). https://doi.org/10.1007/s00211-021-01206-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01206-7

Mathematics Subject Classification

Navigation