Abstract
We consider the discretization of differential equations satisfying the maximal parabolic \(L^p\)-regularity property in Banach spaces by Radau IIA methods. We establish a posteriori error estimators via the maximal parabolic regularity of the differential equation. To complete the picture, we utilize the maximal parabolic regularity of the numerical methods to prove that the estimators are of optimal order.
Similar content being viewed by others
References
Akrivis, G., Makridakis, Ch.: On maximal regularity estimates for discontinuous Galerkin time-discrete methods. SIAM J. Numer. Anal. 60, 180–194 (2022). https://doi.org/10.1137/20M1383781
Akrivis, G., Makridakis, Ch., Nochetto, R.H.: A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006). https://doi.org/10.1090/S0025-5718-05-01800-4
Akrivis, G., Makridakis, Ch., Nochetto, R.H.: Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114, 133–160 (2009). https://doi.org/10.1007/s00211-009-0254-2
Akrivis, G., Makridakis, Ch., Nochetto, R.H.: Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118, 429–456 (2011). https://doi.org/10.1007/s00211-011-0363-6
Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L_p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23, 669–693 (2002). https://doi.org/10.1081/NFA-120016264
Cuesta, E., Makridakis, Ch.: A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces. Numer. Math. 110, 257–275 (2008). https://doi.org/10.1007/s00211-008-0165-7
Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)
de Simon, L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Semin. Mat. Univ. Padova 34, 205–223 (1964)
González, C., Palencia, C.: Stability of time-stepping methods for abstract time-dependent parabolic problems. SIAM J. Numer. Anal. 35, 973–989 (1998). https://doi.org/10.1137/S0036142995283412
Kalton, N.J., Lancien, G.: A solution to the problem of \(L^p\)-maximal regularity. Math. Z. 235, 559–568 (2000). https://doi.org/10.1007/PL00004816
Kovács, B., Li, B., Lubich, C.: A-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal. 54, 3600–3624 (2016). https://doi.org/10.1137/15M1040918
Kunstmann, P.C., Li, B., Lubich, C.: Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Found. Comput. Math. 18, 1109–1130 (2018). https://doi.org/10.1007/s10208-017-9364-x
Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, fourier multiplier theorems and \(H^\infty \)-functional calculus. Funct. Anal. Methods Evol. Equ. Lect. Notes Math. 2004, 65–311 (1855). https://doi.org/10.1007/978-3-540-44653-8_2
Li, B.: Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comp. 88, 1–44 (2019). https://doi.org/10.1090/mcom/3316
Li, B.: Maximal regularity of multistep fully discrete finite element methods for parabolic equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab019
Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank-Nicolson method: application to a parabolic problem. SIAM J. Sci. Comp. 31, 2757–2783 (2009). https://doi.org/10.1137/080715135
Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkhäuser Classics, Basel (1995)
Makridakis, Ch., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003). https://doi.org/10.1137/S0036142902406314
Makridakis, Ch., Nochetto, R.H.: A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104, 489–514 (2006). https://doi.org/10.1007/s00211-006-0013-6
Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53, 525–589 (2000). https://doi.org/10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Anal. 319, 735–758 (2001). https://doi.org/10.1007/PL00004457
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Akrivis, G., Makridakis, C.G. A posteriori error estimates for Radau IIA methods via maximal parabolic regularity. Numer. Math. 150, 691–717 (2022). https://doi.org/10.1007/s00211-022-01271-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-022-01271-6
Keywords
- A posteriori error estimates
- Maximal parabolic regularity
- Discrete maximal parabolic regularity
- Radau IIA methods