Skip to main content

A posteriori error estimates for Radau IIA methods via maximal parabolic regularity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the discretization of differential equations satisfying the maximal parabolic \(L^p\)-regularity property in Banach spaces by Radau IIA methods. We establish a posteriori error estimators via the maximal parabolic regularity of the differential equation. To complete the picture, we utilize the maximal parabolic regularity of the numerical methods to prove that the estimators are of optimal order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Makridakis, Ch.: On maximal regularity estimates for discontinuous Galerkin time-discrete methods. SIAM J. Numer. Anal. 60, 180–194 (2022). https://doi.org/10.1137/20M1383781

  2. Akrivis, G., Makridakis, Ch., Nochetto, R.H.: A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006). https://doi.org/10.1090/S0025-5718-05-01800-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Makridakis, Ch., Nochetto, R.H.: Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114, 133–160 (2009). https://doi.org/10.1007/s00211-009-0254-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Akrivis, G., Makridakis, Ch., Nochetto, R.H.: Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118, 429–456 (2011). https://doi.org/10.1007/s00211-011-0363-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L_p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23, 669–693 (2002). https://doi.org/10.1081/NFA-120016264

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuesta, E., Makridakis, Ch.: A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces. Numer. Math. 110, 257–275 (2008). https://doi.org/10.1007/s00211-008-0165-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  8. de Simon, L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Semin. Mat. Univ. Padova 34, 205–223 (1964)

    MathSciNet  MATH  Google Scholar 

  9. González, C., Palencia, C.: Stability of time-stepping methods for abstract time-dependent parabolic problems. SIAM J. Numer. Anal. 35, 973–989 (1998). https://doi.org/10.1137/S0036142995283412

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalton, N.J., Lancien, G.: A solution to the problem of \(L^p\)-maximal regularity. Math. Z. 235, 559–568 (2000). https://doi.org/10.1007/PL00004816

    Article  MathSciNet  MATH  Google Scholar 

  11. Kovács, B., Li, B., Lubich, C.: A-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal. 54, 3600–3624 (2016). https://doi.org/10.1137/15M1040918

    Article  MathSciNet  MATH  Google Scholar 

  12. Kunstmann, P.C., Li, B., Lubich, C.: Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Found. Comput. Math. 18, 1109–1130 (2018). https://doi.org/10.1007/s10208-017-9364-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, fourier multiplier theorems and \(H^\infty \)-functional calculus. Funct. Anal. Methods Evol. Equ. Lect. Notes Math. 2004, 65–311 (1855). https://doi.org/10.1007/978-3-540-44653-8_2

    Article  MATH  Google Scholar 

  14. Li, B.: Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comp. 88, 1–44 (2019). https://doi.org/10.1090/mcom/3316

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B.: Maximal regularity of multistep fully discrete finite element methods for parabolic equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab019

    Article  Google Scholar 

  16. Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank-Nicolson method: application to a parabolic problem. SIAM J. Sci. Comp. 31, 2757–2783 (2009). https://doi.org/10.1137/080715135

    Article  MathSciNet  MATH  Google Scholar 

  17. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkhäuser Classics, Basel (1995)

    Book  Google Scholar 

  18. Makridakis, Ch., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003). https://doi.org/10.1137/S0036142902406314

    Article  MathSciNet  MATH  Google Scholar 

  19. Makridakis, Ch., Nochetto, R.H.: A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104, 489–514 (2006). https://doi.org/10.1007/s00211-006-0013-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53, 525–589 (2000). https://doi.org/10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M

  21. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Anal. 319, 735–758 (2001). https://doi.org/10.1007/PL00004457

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Akrivis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akrivis, G., Makridakis, C.G. A posteriori error estimates for Radau IIA methods via maximal parabolic regularity. Numer. Math. 150, 691–717 (2022). https://doi.org/10.1007/s00211-022-01271-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01271-6

Keywords

Mathematics Subject Classification