Abstract
This paper is concerned with computing approximations of matrix functionals of the form \(F(A):={{{\varvec{v}}}}^Tf(A){{{\varvec{v}}}}\), where A is a large symmetric positive definite matrix, \({{{\varvec{v}}}}\) is a vector, and f is a Stieltjes function. We approximate F(A) with the aid of rational Gauss quadrature rules. Associated rational Gauss–Radau and rational anti-Gauss rules are developed. Pairs of rational Gauss and rational Gauss–Radau quadrature rules, or pairs of rational Gauss and rational anti-Gauss quadrature rules, can be used to determine upper and lower bounds, or approximate upper and lower bounds, for F(A). The application of rational Gauss rules, instead of standard Gauss rules, is beneficial when the function f has singularities close to the spectrum of A.
Similar content being viewed by others
References
Alqahtani, H., Reichel, L.: Simplified Anti-Gauss Quadrature Rules with Applications in Linear Algebra. Numer. Algorithms. 77, 577–602 (2018)
Alqahtani, H., Reichel, L.: Generalized Block Anti-Gauss Quadrature Rules. Numer. Math. 143, 605–648 (2019)
Ammar, G.S., Gragg, W.B.: Superfast Solution of Real Positive Definite Toeplitz Systems. SIAM J. Matrix Anal. Appl. 9, 61–76 (1988)
Beckermann, B., Reichel, L.: Error Estimation and Evaluation of Matrix Functions Via the Faber Transform. SIAM J. Numer. Anal. 47, 3849–3883 (2009)
Bentbib, A.H., El Ghomari, M., Jagels, C., Jbilou, K., Reichel, L.: The Extended Global Lanczos Method for Matrix Function Approximation. Electron. Trans. Numer. Anal. 50, 144–163 (2018)
Berg, C.: Stieltjes-Pick-Bernstein-Schoenberg and their Connection to Complete Monotonicity, in Positive Definite Functions. From Schoenberg to Space-Time Challenges, Mateu, S., Porcu, E., eds., Dept. of Math., University Jaume I, Castellón de la Plana, Spain, (2008)
Calvetti, D., Reichel, L., Sgallari, F.: Application of Anti-Gauss Quadrature Rules in Linear Algebra. In: Gautschi, W., Golub, G.H., Opfer, G. (eds.) Applications and Computation of Orthogonal Polynomials, pp. 41–56. Basel, Birkhäuser (1999)
Deckers, K., Bultheel, A.: Recurrence and Asymptotics for Orthonormal Rational Functions on an Interval. IMA J. Numer. Anal. 29, 1–23 (2009)
Deckers, K., Bultheel, A.: The Existence and Construction of Rational Gauss-type Rules. Appl. Math. Comput. 218, 10299–10320 (2012)
Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and Anti-Gauss Quadrature with Application to Networks. SIAM J. Matrix Anal. Appl. 34, 1655–1684 (2013)
Frommer, A.: Monotone Convergence of the Lanczos Approximations to Matrix Functions of Hermitian Matrices. Electron. Trans. Numer. Anal. 35, 118–128 (2009)
Frommer, A., Schweitzer, M.: Error Bounds and Estimates for Krylov Subspace Approximations of Stieltjes Matrix Functions. BIT Numer. Math. 56, 865–892 (2016)
Gautschi, W.: Orthogonal Polynomials: Computation And Approximation. Oxford University Press, Oxford (2004)
Golub, G.H., Meurant, G.: Matrices, Moments And Quadrature with Applications. Princeton University Press, Princeton (2010)
Gonchar, A.A., Lagomasino, G. López.: On Markov’s Theorem for Multipoint Padé Approximants. Math. USSR Sb. 34, 449–459 (1978)
Henrici, P.: Applied And Computational Complex Analysis, vol. 2. Wiley, New York (1977)
Jagels, C., Jbilou, K., Reichel, L.: The Extended Global Lanczos Method, Gauss-Radau Quadrature, and Matrix Function Approximation. J. Comput. Appl. Math. 381, 113027 (2021)
Jagels, C., Reichel, L.: Recursion Relations for the Extended Krylov Subspace Method. Linear Algebra Appl. 434, 1716–1732 (2011)
Jagels, C., Reichel, L.: The Structure of Matrices in Rational Gauss Quadrature. Math. Comp. 82, 2035–2060 (2013)
Keady, G., Khajohnsaksumeth, N., Wiwatanapataphee, B.: On Functions and Inverses, Both Positive, Decreasing and Convex: and Stieltjes Functions. Cog. Math. Stat. 5, 1477543 (2018)
Laurie, D.P.: Anti-Gaussian Quadrature Formulas. Math. Comp. 65, 735–747 (1996)
Massei, S., Robol, L.: Rational Krylov for Stieltjes Matrix Functions: Convergence and Pole Selection. BIT Numer. Math. 61, 237–273 (2021)
Pranić, M.S., Reichel, L.: Generalized Anti-Gauss Quadrature Rules. J. Comput. Appl. Math. 284, 235–243 (2015)
Pranić, M.S., Reichel, L.: Recurrence Relations for Orthogonal Rational Functions. Numer. Math. 123, 629–642 (2013)
Pranić, M.S., Reichel, L.: Rational Gauss Quadrature. SIAM J. Numer. Anal. 52, 832–851 (2014)
Sokol, A.D.: Real-variables Characterization of Generalized Stieltjes Functions. Expo. Math. 28, 179–185 (2010)
Acknowledgements
The authors would like to thank the referees for comments. Research by LR was supported in part by NSF grant DMS-1720259.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alahmadi, J., Pranić, M. & Reichel, L. Rational gauss quadrature rules for the approximation of matrix functionals involving stieltjes functions. Numer. Math. 151, 443–473 (2022). https://doi.org/10.1007/s00211-022-01293-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-022-01293-0