Skip to main content
Log in

An analysis of finite element locking in a parameter dependent model problem

  • Original article
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We consider the bilinear finite element approximation of smooth solutions to a simple parameter dependent elliptic model problem, the problem of highly anisotropic heat conduction. We show that under favorable circumstances that depend on both the finite element mesh and on the type of boundary conditions, the effect of parametric locking of the standard FEM can be reduced by a simple variational crime. In our analysis we split the error in two orthogonal components, the approximation error and the consistency error, and obtain different bounds for these separate components. Also some numerical results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received September 6, 1999 / Revised version received March 28, 2000 / Published online April 5, 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havu, V., Pitkäranta, J. An analysis of finite element locking in a parameter dependent model problem. Numer. Math. 89, 691–714 (2001). https://doi.org/10.1007/s002110100277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002110100277

Navigation