Skip to main content
Log in

Applying Approximate Counting for Computing the Frequency Moments of Long Data Streams

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

This paper takes up a remark in the well-known paper of Alon, Matias, and Szegedy (J. Comput. Syst. Sci. 58(1):137–147, 1999) about the computation of the frequency moments of data streams and shows in detail how any F k with k≥1 can be approximately computed using space O(km 1−1/k(k+log m+log log  n)) based on approximate counting. An important building block for this, which may be interesting in its own right, is a new approximate variant of reservoir sampling using space O(log log  n) for constant error parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of 21st PODS, pp. 1–16 (2002)

  3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhuvanagiri, L., Ganguly, S., Kesh, D., Saha, C.: Simpler algorithm for estimating frequency moments of data streams. In: Proceedings of 17th SODA, pp. 708–713 (2006)

  5. Chakrabarti, M., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In: Proceedings of 18th Conference on Computational Complexity, pp. 107–117 (2003)

  6. Coppersmith, D., Kumar, R.: An improved data stream algorithm for frequency moments. In: Proceedings of 15th SODA, pp. 151–156 (2004)

  7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  8. Flajolet, P.: Approximate counting: a detailed analysis. In: BIT, pp. 113–134 (1985)

  9. Ganguly, S.: Estimating frequency moments of update streams using random linear combinations. In: Proceedings of 8th RANDOM, pp. 369–380 (2004)

  10. Ganguly, S.: A hybrid technique for estimating frequency moments over data streams, 2004. Manuscript, available at http://www.cse.iitk.ac.in/users/sganguly/HybridFk.pdf

  11. Hofri, M., Kechris, N.: Probabilistic counting of a large number of events—revisited, 1995. Manuscript, available at http://www.cs.wpi.edu/~hofri/

  12. Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments. In: Proceedings of 37th STOC, pp. 202–208 (2005)

  13. Morris, R.: Counting large numbers of events in small registers. Commun. ACM 21(10), 840–842 (1978)

    Article  MATH  Google Scholar 

  14. Muthukrishnan, S.: Data streams: algorithms and applications. In: Proceedings of 14th SODA, pp. 413–413 (2003). Online version: http://athos.rutgers.edu/~muthu/stream-1-1.ps

  15. Muthukrishnan, S.: Data streams: Algorithms and Applications. Now Publishers, Hanover (2005)

    MATH  Google Scholar 

  16. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wegener, I.: The Complexity of Boolean Functions. Wiley–Teubner, Stuttgart (1987)

    MATH  Google Scholar 

  18. Woodruff, D.: Optimal space lower bounds for all frequency moments. In: Proceedings of 15th SODA, pp. 167–175 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Gronemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronemeier, A., Sauerhoff, M. Applying Approximate Counting for Computing the Frequency Moments of Long Data Streams. Theory Comput Syst 44, 332–348 (2009). https://doi.org/10.1007/s00224-007-9048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-007-9048-z

Keywords

Navigation