Skip to main content

Advertisement

Log in

Efficient Algorithms for Sparse Cyclotomic Integer Zero Testing

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We present two deterministic polynomial time algorithms for the following problem: check whether a sparse polynomial f(x) vanishes at a given primitive nth root of unity ζ n . A priori f n ) may be nonzero and doubly exponentially small in the input size. The existence of a polynomial time procedure in the case of factored n was conjectured by D. Plaisted in 1984, but all previously known algorithms are either randomized, or do not run in polynomial time.

We apply polynomial zero testing algorithms to construct a nondeterministic polynomial time algorithm for the torsion point problem (TP). The problem TP is a particular case of the feasibility problem for a system of polynomial equations in complex numbers (coefficients of polynomials are integers). In the problem TP all coordinates of a solution must be roots of unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Bro Miltersen, P.: On the complexity of numerical analysis. In: IEEE Conference on Computational Complexity, pp. 331–339 (2006)

  2. Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. I: Efficient Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  3. Blomer, J.: A probabilistic zero-test for expressions involving roots of rational numbers. In: Proc. ESA. LNCS, vol. 1461, pp. 151–162. Springer, Berlin (1998)

    Google Scholar 

  4. Chen, Z.-Z., Kao, M.-Y.: Reducing randomness via irrational numbers. SIAM J. Comput. 29(4), 1247–1256 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, Q.: Derandomization of sparse cyclotomic integer zero testing. In: FOCS (2007)

  6. Conway, J.H., Jones, A.J.: Trigonometric Diophantine equations (on vanishing sums of roots of unity). Acta Arith. 30, 229–240 (1976)

    MATH  MathSciNet  Google Scholar 

  7. de Bruijn, N.G.: On the factorization of cyclic groups. Indag. Math. 15, 370–377 (1953)

    Google Scholar 

  8. Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The open problems project: Problem 33. http://maven.smith.edu/~orourke/TOPP/

  9. Filaseta, M., Schinzel, A.: On testing the divisibility of lacunary polynomials by cyclotomic polynomials. Math. Comput. 73, 957–965 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Filaseta, M., Granville, A., Schinzel, A.: Irreducibility and greatest common divisor algorithms for sparse polynomials. http://www.math.sc.edu//~filaseta/papers/SparsePaper.pdf

  11. Garey, M., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: Proc. ACM Symp. Theory Comp., pp. 10–21 (1976)

  12. Koiran, P.: Hilbert’s Nullstellensatz is in the polynomial hierarchy. J. Complex. 12(4), 273–286 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lam, T.Y., Leung, K.H.: On vanishing sums of roots of unity. J. Algebra 224, 91–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mignotte, M.: Identification of algebraic numbers. J. Algorithms 3, 197–204 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Plaisted, D.A.: New NP-hard and NP-complete polynomial and integer divisibility problems. Theor. Comput. Sci. 31, 125–138 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rédei, L.: Ein Beitrag zum Problem der Faktorisation von Abelschen Gruppen. Acta Math. Acad. Sci. Hung. 1, 197–207 (1950)

    Article  MATH  Google Scholar 

  17. Rédei, L.: Natürliche Basen des Kreisteilungskörpers. Abh. Math. Semin. Univ. Hamb. 23, 180–200 (1959)

    Article  MATH  Google Scholar 

  18. Rojas, J.M.: Efficiently detecting subtori and torsion points. In: Corso, A., Migliore, J., Polini, C. (eds.) Proceedings of MAGIC 2005, Midwest Algebra, Geometry, and Their Interactions Conference, Notre Dame University, Indiana, 7–11 Oct. 2005. Contemporary Mathematics, vol. 448, pp. 213–233. AMS, New York (2007)

    Google Scholar 

  19. Schoenberg, I.J.: A note on the cyclotomic polynomial. Mathematika 11, 131–136 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schwartz, J.N.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27, 701–717 (1980)

    MATH  Google Scholar 

  21. Steinberger, J.P.: Minimal vanishing sums of roots of unity with large coefficients. http://www.math.ucdavis.edu/~jpsteinb/vanishing.ps

  22. Tao, T.: An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 12(1), 121–127 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Tarasov, S., Vyalyi, M.: An efficient algorithm for zero-testing of a lacunary polynomial at the roots of unity. In: Proc. CSR2007. LNCS, vol. 4649, pp. 397–406. Springer, Berlin (2007)

    Google Scholar 

  24. Titova, E., Shevchenko, V.: Left and right kernels of a planar multiindex transportation problem. In: Proc. of VIII International Seminar Discrete Mathematics and Applications, pp. 229–230. MSU, Moscow (2004). (In Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail N. Vyalyi.

Additional information

The research of Q. Cheng was partially supported by NSF Career Award CCR-0237845 of USA and by Project 973 (no: 2007CB807903) of China.

The research of S.P. Tarasov was supported by the RFBR grant 08–01–00414.

The research of M.N. Vyalyi was supported by the RFBR grants 08–01–00414, 05–01–02803–NTsNIL_a and the grant NS 5294.2008.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Tarasov, S.P. & Vyalyi, M.N. Efficient Algorithms for Sparse Cyclotomic Integer Zero Testing. Theory Comput Syst 46, 120–142 (2010). https://doi.org/10.1007/s00224-008-9158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-008-9158-2

Keywords