Skip to main content
Log in

Why Almost All k-Colorable Graphs Are Easy to Color

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Coloring a k-colorable graph using k colors (k≥3) is a notoriously hard problem. Considering average case analysis allows for better results. In this work we consider the uniform distribution over k-colorable graphs with n vertices and exactly cn edges, c greater than some sufficiently large constant. We rigorously show that all proper k-colorings of most such graphs lie in a single “cluster”, and agree on all but a small, though constant, portion of the vertices. We also describe a polynomial time algorithm that whp finds a proper k-coloring of such a random k-colorable graph, thus asserting that most such graphs are easy to color. This should be contrasted with the setting of very sparse random graphs (which are k-colorable whp), where experimental results show some regime of edge density to be difficult for many coloring heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Friedgut, E.: A sharp threshold for k-colorability. Random Struct. Algorithms 14(1), 63–70 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Achlioptas, D., Moore, C.: Random k-sat: Two moments suffice to cross a sharp threshold. SIAM J. Comput. 36(3), 740–762 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Proc. 38th ACM Symp. on Theory of Computing

  4. Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26(6), 1733–1748 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Shimon, S., Krivelevich, M.: Random regular graphs of non-constant degree: edge distribution and applications. Manuscript (2006)

  6. Blum, A., Spencer, J.: Coloring random and semi-random k-colorable graphs. J. Algorithms 19(2), 204–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bollobás, B.: The chromatic number of random graphs. Combinatorica 8(1), 49–55 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Böttcher, J.: Coloring sparse random k-colorable graphs in polynomial expected time. In: Proc. 30th International Symp. on Mathematical Foundations of Computer Science, pp. 156–167 (2005)

  9. Braunstein, A., Mézard, M., Weigt, M., Zecchina, R.: Constraint satisfaction by survey propagation. Comput. Complex. Stat. Phys. (2005)

  10. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27, 201–226 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coja-Oghlan, A.: Coloring semirandom graphs optimally. In: Proc. 31st International Colloquium on Automata, Languages, and Programming, pp. 383–395 (2004)

  12. Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all satisfiable k-cnf formulas are easy. In: 13th Conference on Analysis of Algorithms, DMTCS Proceedings, pp. 89–102 (2007)

  13. Daudé, H., Mézard, M., Mora, T., Zecchina, R.: Pairs of sat-assignments in random boolean formulæ. Theoret. Comput. Sci. 393(1–3), 260–279 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dyer, M.E., Frieze, A.M.: The solution of some random np-hard problems in polynomial expected time. J. Algorithms 10(4), 451–489 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57(2), 187–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. Syst. Sci. 63(4), 639–671 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. In: Random, pp. 339–350 (2006)

  18. Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs. Random Struct. Algorithms 27(2), 251–275 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Friedman, J., Kahn, J., Szemerédi, E.: On the second eigenvalue in random regular graphs. In: Proc. 21st ACM Symp. on Theory of Computing, pp. 587–598 (1989)

  20. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krivelevich, M., Vilenchik, D.: Semirandom models as benchmarks for coloring algorithms. In: 3rd Workshop on Analytic Algorithmics and Combinatorics, pp. 211–221 (2006)

  22. Kučera, L.: Expected behavior of graph coloring algorithms. In: Proc. Fundamentals of Computation Theory. Lecture Notes in Comput. Sci., vol. 56, pp. 447–451. Springer, Berlin (1977)

    Google Scholar 

  23. Łuczak, T.: The chromatic number of random graphs. Combinatorica 11(1), 45–54 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mulet, R., Pagnani, A., Weigt, M., Zecchina, R.: Coloring random graphs. Phys. Rev. Lett. 89(26), 268701 (2002)

    Article  MathSciNet  Google Scholar 

  25. Prömel, H., Steger, A.: Random l-colorable graphs. Random Struct. Algorithms 6, 21–37 (1995)

    Article  MATH  Google Scholar 

  26. Turner, J.S.: Almost all k-colorable graphs are easy to color. J. Algorithms 9(1), 63–82 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Vilenchik.

Additional information

Research of M. Krivelevich was supported in part by USA-Israel BSF Grant 2002-133, and by grant 526/05 from the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coja-Oghlan, A., Krivelevich, M. & Vilenchik, D. Why Almost All k-Colorable Graphs Are Easy to Color. Theory Comput Syst 46, 523–565 (2010). https://doi.org/10.1007/s00224-009-9231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9231-5

Keywords

Navigation