Abstract
We show that a continuous surjection of [0,1] onto a Euclidean Peano continuum X can be computed uniformly from a name of X as a compact set and a local connectivity operator for X. We show by means of an example that the second parameter is not superfluous. We then show that this parameter is not necessary either in that there is a computable map of [0,1] into ℝ2 whose image is not effectively locally connected.
Similar content being viewed by others
References
Allaart, P.C., Kawamura, K.: Dimensions of the coordinate functions of space-filling curves. J. Math. Anal. Appl. 335(2), 1161–1176 (2007)
Arge, L., de Berg, M., Haverkort, H., Yi, K.: The priority R-tree: a practically efficient and worst-case optimal R-tree. ACM Trans. Algorithms 4(1), 30 (2008). Art. 9
Banakh, T., Tuncali, M.: Controlled Hahn-Mazurkiewicz theorem and some new dimension functions of Peano continua. Topology Appl. 154(7), 1286–1297 (2007)
Brattka, V.: Plottable real number functions and the computable graph theorem. SIAM J. Comput. 38(1), 303–328 (2008)
Couch, P.: On a computable Hahn-Mazurkiewicz theorem. Masters thesis, Lamar University (2008)
Daniel, D., McNicholl, T.: Effective local connectivity properties. Submitted
Gu, X., Lutz, J., Mayordomo, E.: Curves that must be retraced. In: Bauer, A., Dillhage, R., Hertling, P., Ko, K., Rettinger, R. (eds.) CCA 2009, Sixth International Conference on Computability and Complexity in Analysis. Informatik Berichte, vol. 353, pp. 147–158. Fern-Universität, Hagen (2009)
Günther, F., Mehl, M., Pögl, M., Zenger, C.: A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J. Sci. Comput. 28(5), 1634–1650 (2006) (electronic)
Hahn, H.: Mengentheoretische characterisierung der stetigen kurven. Sitzungsber. Akad. Wiss. Wien Abt. IIa 123, 2433–2489 (1914)
Hamilton, C.H., Rau-Chaplin, A.: Compact Hilbert indices: space-filling curves for domains with unequal side lengths. Inform. Process. Lett. 105(5), 155–163 (2008)
Hocking, J.G., Young, G.S.: Topology, 2nd edn. Dover, New York (1988)
Cannon, J., Thurston, W.: Group invariant Peano curves. Geom. Topol. 11, 1315–1355 (2007)
Makhanov, S.: Optimization and correction of the tool path of the five-axis milling machine. I. Spatial optimization. Math. Comput. Simul. 75(5–6), 210–230 (2007)
Mazurkiewicz, S.: Sur les lignes de jordan. Fund. Math. 1, 166–209 (1920)
Miller, J.: Effectiveness for embedded spheres and balls. In: Brattka, V., Schröder, M., Weihrauch, K. (eds.) CCA 2002, Computability and Complexity in Analysis. Electronic Notes in Computer Science, vol. 66, pp. 127–138. Elsevier, Amsterdam (2002)
Moore, R.L.: On the foundations of plane analysis situs. Trans. Amer. Math. Soc. 17(2), 131–164 (1916)
Munkres, J.R.: Topology: A First Course. Englewood Cliffs, Prentice-Hall (1975)
Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Ann. 36, 157–160 (1890)
Sagan, H.: Space-filling Curves. Universitext. Springer, New York (1994)
Séébold, P.: Tag-systems for the Hilbert curve. Discrete Math. Theor. Comput. Sci. 9(2), 213–226 (2007) (electronic)
Sirvent, V.F.: Space filling curves and geodesic laminations. Geom. Dedicata 135, 1–14 (2008)
Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Couch, P.J., Daniel, B.D. & McNicholl, T.H. Computing Space-Filling Curves. Theory Comput Syst 50, 370–386 (2012). https://doi.org/10.1007/s00224-010-9306-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-010-9306-3