Skip to main content
Log in

The Complexity of Circumscriptive Inference in Post’s Lattice

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Circumscription is one of the most important formalisms for reasoning with incomplete information. It is equivalent to reasoning under the extended closed world assumption, which allows to conclude that the facts derivable from a given knowledge base are all facts that satisfy a given property. In this paper, we study the computational complexity of several formalizations of inference in propositional circumscription for the case that the knowledge base is described by a propositional theory using only a restricted set of Boolean functions. To systematically cover all possible sets of Boolean functions, we use Post’s lattice. With its help, we determine the complexity of circumscriptive inference for all but two possible classes of Boolean functions. Each of these problems is shown to be either \(\protect \ensuremath {\mathrm {\Pi ^{\mathrm{p}}_{2}}}\)-complete, coNP-complete, or solvable in logspace.

In particular, we show that in the general case, unless P=NP, only literal theories admit polynomial-time algorithms, while for some restricted variants the tractability border is the same as for classical propositional inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauland, M., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. In: Proc. 23rd Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 3884, pp. 500–511. Springer, Berlin (2006)

    Google Scholar 

  2. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for Linear Temporal Logic. In: Proc. 10th FoSSaCS. Lecture Notes in Computer Science, vol. 4423, pp. 48–62. Springer, Berlin (2007)

    Google Scholar 

  3. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of propositional implication. Inf. Process. Lett. 109(18), 1071–1077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of default logic. In: Proc. 12th International Conference on Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 5584, pp. 51–64. Springer, Berlin (2009)

    Google Scholar 

  5. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)

    Article  Google Scholar 

  6. Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace MOD-classes. Math. Syst. Theory 25, 223–237 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cadoli, M., Donini, F., Schaerf, M.: On compact representations of propositional circumscription. Theor. Comput. Sci. 182, 205–216 (1995)

    Google Scholar 

  8. Cadoli, M., Lenzerini, M.: The complexity of closed world reasoning and circumscription. In: Proc. 8th National Conference on Artificial Intelligence, pp. 550–555 (1990)

    Google Scholar 

  9. Cadoli, M., Lenzerini, M.: The complexity of propositional closed world reasoning and circumscription. J. Comput. Syst. Sci. 48(2), 255–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durand, A., Hermann, M.: The inference problem for propositional circumscription of affine formulas is coNP-complete. In: Proc. 20th Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 2607, pp. 451–462. Springer, Berlin (2003)

    Google Scholar 

  11. Durand, A., Hermann, M., Nordh, G.: Trichotomy in the complexity of minimal inference. In: Proc. 24th Symposium on Logic in Computer Science, pp. 387–396. IEEE Computer Society, Los Alamitos (2009)

    Chapter  Google Scholar 

  12. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed world reasoning are \(\Pi_{2}^{p}\)-complete. Theor. Comput. Sci. 114(2), 231–245 (1993). Addendum in TCS 118, 15 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelfond, M., Przymusinska, H., Przymusinski, T.C.: On the relationship between circumscription and negation as failure. Artif. Intell. 38(1), 75–94 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirousis, L.M., Kolaitis, P.: The complexity of minimal satisfiability in Post’s lattice. Unpublished notes (2001)

  15. Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. Inf. Comput. 187(1), 20–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirousis, L.M., Kolaitis, P.G.: A dichotomy in the complexity of propositional circumscription. Theory Comput. Syst. 37(6), 695–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewis, H.: Satisfiability problems for propositional calculi. Math. Syst. Theory 13, 45–53 (1979)

    Article  MATH  Google Scholar 

  18. McCarthy, J.: Circumscription—A form of non-monotonic reasoning. Artif. Intell. 13, 27–39 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfiability for fragments of CTL and CTL. Int. J. Found. Comput. Sci. 20(5), 901–918 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Proc. 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. Lecture Notes in Computer Science, vol. 3452, pp. 257–269. Springer, Berlin (2005)

    Google Scholar 

  21. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  22. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  23. Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  24. Reith, S.: On the complexity of some equivalence problems for propositional calculi. In: Proc. 28th International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, pp. 632–641. Springer, Berlin (2003)

    Google Scholar 

  25. Reith, S., Wagner, K.: The complexity of problems defined by Boolean circuits. In: Proc. International Conference Mathematical Foundation of Informatics 1999, pp. 141–156. World Scientific, Singapore (2005)

    Chapter  Google Scholar 

  26. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)

    Google Scholar 

  27. Schnoor, H.: The complexity of model checking for boolean formulas. Int. J. Found. Comput. Sci. 21(3), 289–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomas, M.: The complexity of circumscriptive inference in Post’s lattice. In: Proc. 10th International Conference on Logic Programming and Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol. 5753, pp. 290–302. Springer, Berlin (2009)

    Chapter  Google Scholar 

  29. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Thomas.

Additional information

A preliminary version of this paper appeared in the proceedings of the 10th International Conference on Logic Programming and Nonmonotonic Reasoning [28].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M. The Complexity of Circumscriptive Inference in Post’s Lattice. Theory Comput Syst 50, 401–419 (2012). https://doi.org/10.1007/s00224-010-9311-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-010-9311-6

Keywords

Navigation