Skip to main content
Log in

Trichotomies in the Complexity of Minimal Inference

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study the complexity of the propositional minimal inference problem. Although the complexity of this problem has been already extensively studied before because of its fundamental importance in nonmonotonic logics and commonsense reasoning, no complete classification of its complexity was found. We classify the complexity of four different and well-studied formalizations of the problem in the version with unbounded queries, proving that the complexity of the minimal inference problem for each of them has a trichotomy (between P, coNP-complete, and Π2P-complete). One of these results finally settles with a positive answer the trichotomy conjecture of Kirousis and Kolaitis (Theory Comput. Syst. 37(6):659–715, 2004). In the process we also strengthen and give a much simplified proof of the main result from Durand and Hermann (Proceedings 20th Symposium on Theoretical Aspects of Computer Science (STACS 2003), pp. 451–462, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, K.A., Pixley, A.F.: Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems. Math. Z. 143(2), 165–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News, Complexity Theory Column 42 34(4), 38–52 (2003)

    Google Scholar 

  3. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News, Complexity Theory Column 43 35(1), 22–35 (2004)

    Google Scholar 

  4. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96(2), 59–66 (2005)

    Article  MATH  Google Scholar 

  5. Cadoli, M.: The complexity of model checking for circumscriptive formulae. Inf. Process. Lett. 44(3), 113–118 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cadoli, M., Lenzerini, M.: The complexity of propositional closed world reasoning and circumscription. J. Comput. Syst. Sci. 48(2), 255–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z.-Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput. 119(2), 231–239 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  9. Dalmau, V.: Computational complexity of problems over generalized formulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya, 2000

  10. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artif. Intell. 56(2–3), 197–222 (1992)

    Article  MATH  Google Scholar 

  11. Durand, A., Hermann, M.: The inference problem for propositional circumscription of affine formulas is coNP-complete. In: Alt, H., Habib, M. (eds.) Proceedings 20th Symposium on Theoretical Aspects of Computer Science (STACS 2003). Lecture Notes in Computer Science, vol. 2607, pp. 451–462. Springer, Berlin (2003)

    Google Scholar 

  12. Durand, A., Hermann, M., Nordh, G.: Trichotomy in the complexity of minimal inference. In: Proceedings 24th Annual IEEE Symposium on Logic in Computer Science (LICS 2009), Los Angeles (CA, USA), pp. 387–396 (2009)

    Google Scholar 

  13. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are \(\mathrm{\Pi}_{2}^{\mathrm{p}}\)-complete. Theor. Comput. Sci. 114(2), 231–245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(1), 95–100 (1968)

    MathSciNet  MATH  Google Scholar 

  15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Proceeding 5th International Conference and Symposium on Logic Programming ICLP/SLP, Seatle (WA), pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  16. Gelfond, M., Przymusinska, H., Przymusinski, T.C.: On the relationship between circumscription and negation as failure. Artif. Intell. 38(1), 75–94 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. Assoc. Comput. Mach. 44(4), 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: On the complexity of some enumeration problems for matroids. SIAM J. Discrete Math. 19(4), 966–984 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kirousis, L.M., Kolaitis, P.G.: On the complexity of model checking and inference in minimal models. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) Proceedings 6th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNRM 2001), Vienna (Austria). Lecture Notes in Computer Science, vol. 2173, pp. 42–53. Springer, Berlin (2001)

    Google Scholar 

  20. Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. Inf. Comput. 187(1), 20–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirousis, L.M., Kolaitis, P.G.: A dichotomy in the complexity of propositional circumscription. Theory Comput. Syst. 37(6), 695–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artif. Intell. 13(1–2), 27–39 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. McCarthy, J.: Applications of circumscription to formalizing common-sense knowledge. Artif. Intell. 28(1), 89–116 (1986)

    Article  MathSciNet  Google Scholar 

  24. Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Baader, F., Voronkov, A. (eds.) Proceedings 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2004), Montevideo (Uruguay). Lecture Notes in Computer Science, vol. 3452, pp. 257–269. Springer, Berlin (2005)

    Google Scholar 

  25. Nordh, G., Jonsson, P.: An algebraic approach to the complexity of propositional circumscription. In: Proceedings 19th IEEE Symposium on Logic in Computer Science (LICS 2004), Turku (Finland), pp. 367–376 (2004)

    Chapter  Google Scholar 

  26. Nordh, G., Zanuttini, B.: Frozen Boolean partial co-clones. In: Proceedings 39th International Symposium on Multiple-Valued Logic (ISMVL 2009), Naha (Okinawa, Japan), pp. 120–125. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  27. International Workshop on Mathematics of Constraint Satisfaction. Open problems list. http://www.cs.rhul.ac.uk/home/green/mathscsp/slides/problems/OpenProblemsList.pdf, March 2006

  28. Papadimitriou, C.H.: On selecting a satisfying truth assignment (extended abstract). In: Proceedings 32nd IEEE Symposium on Foundations of Computer Science (FOCS’91), San Juan (Puerto Rico), pp. 163–169. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  29. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  30. Pöschel, R.: Galois connection for operations and relations. In: Denecke, K., Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications, pp. 231–258. Kluwer Academic, Norwell (2004)

    Google Scholar 

  31. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979)

    Google Scholar 

  32. Post, E.L.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  33. Robertson, N., Seymour, P.D.: Graph minors XIII: the disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Romov, B.A.: The algebras of partial functions and their invariants. Cybern. Syst. Anal. 17(2), 157–167 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing (STOC’78), San Diego (CA, USA), pp. 216–226 (1978)

    Chapter  Google Scholar 

  36. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. Lecture Notes in Computer Science, vol. 5250, pp. 229–254. Springer, Berlin (2008)

    Chapter  Google Scholar 

  37. Thomas, M.: The complexity of circumscriptive inference in Post’s lattice. In: Erdem, E., Lin, F., Schaub, T. (eds.) Proceedings 10th International Conference om Logic Programming and Nonmonotonic Reasoning (LPNMR 2009), Potsdam (Germany). Lecture Notes in Computer Science, vol. 5753, pp. 290–302. Springer, Berlin (2009)

    Google Scholar 

  38. Thomas, M., Vollmer, H.: Complexity of non-monotonic logics. Bull. Eur. Assoc. Theor. Comput. Sci. 102, 53–82 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Hermann.

Additional information

This research was partially supported by the grant ANR-07-BLAN-0327. A preliminary version of the results in Sect. 5 has been published in [24] and of those in Sect. 9 has been published in [12].

G. Nordh was partially supported by the Swedish Research Council (VR) under grant 2008-4675 and the Swedish-French Foundation. Part of this work has been completed during a post-doctoral stay of this author at LIX, Ecole Polytechnique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, A., Hermann, M. & Nordh, G. Trichotomies in the Complexity of Minimal Inference. Theory Comput Syst 50, 446–491 (2012). https://doi.org/10.1007/s00224-011-9320-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9320-0

Keywords

Navigation