Skip to main content
Log in

Maximal Pairs of Computably Enumerable Sets in the Computably Lipschitz Degrees

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

A set A is computably Lipschitz or cl-reducible, for short, to a set B if A is Turing reducible to B by an oracle Turing machine with use function ϕ such that ϕ is bounded by the identity function up to an additive constant, i.e., ϕ(n)≤n+O(1). In this paper we study maximal pairs of computably enumerable (c.e.) cl-degrees or maximal pairs, for short, i.e., pairs of c.e. cl-degrees such that there is no c.e. cl-degree that is above both cl-degrees in this pair. Our main results are as follows. (1) A c.e. Turing degree contains a c.e. cl-degree that is half of a maximal pair if and only if this Turing degree contains a maximal pair if and only if this Turing degree is array noncomputable. (2) The cl-degrees of all weak truth-table complete sets are halves of maximal pairs while there is a Turing complete set A such that the cl-degree of A is not half of any maximal pair. In fact, any high c.e. Turing degree contains a c.e. cl-degree that is not half of a maximal pair. (3) Above any c.e. cl-degree there is a maximal pair. (4) There is a maximal pair which at the same time is a minimal pair. (5) There is a pair of c.e. cl-degrees that is not maximal and does not possess a least upper bound.

Moreover, we make some observations on the structure of the c.e. cl-degrees in general. For instance, we give a very simple proof of the fact that there are no maximal c.e. cl-degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambos-Spies, K.: Cupping and noncapping in the r.e. weak truth table and Turing degrees. Arch. Math. Log. Grundl.forsch. 25(3–4), 109–126 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barmpalias, G.: Computably enumerable sets in the Solovay and the strong weak truth table degrees. In: Computability in Europe, Amsterdam, 2005. Lecture Notes in Comput. Sci., vol. 3526, pp. 8–17. Springer, Berlin (2005)

    Google Scholar 

  3. Barmpalias, G., Downey, R.G., Greenberg, N.: Working with strong reducibilities above totally ω-c.e. and array computable degrees. Trans. Am. Math. Soc. 362(2), 777–813 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barmpalias, G., Lewis, A.E.M.: The ibT degrees of computably enumerable sets are not dense. Ann. Pure Appl. Log. 141(1–2), 51–60 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bélanger, D.R.: Structures of some strong reducibilities. In: Mathematical Theory and Computational Practice, Proceedings of 5th Conference on Computability in Europe, CiE 2009, Heidelberg, Germany, 19–24 July 2009. Lecture Notes in Comput. Sci., vol. 5635, pp. 21–30. Springer, Berlin (2009)

    Google Scholar 

  6. Day, A.R.: The computable Lipschitz degrees of computably enumerable sets are not dense. Ann. Pure Appl. Log. 161(12), 1588–1602 (2010)

    Article  MATH  Google Scholar 

  7. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  8. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. In: Mathematical Foundations of Computer Science, Mariánské Lázně, 2001. Lecture Notes in Comput. Sci., vol. 2136, pp. 316–327. Springer, Berlin (2001)

    Google Scholar 

  9. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. J. Comput. Syst. Sci. 68(1), 96–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R.G., Jockusch, C., Stob, M.: Array nonrecursive sets and multiple permitting arguments. In: Recursion Theory Week, Oberwolfach, 1989. Lecture Notes in Math., vol. 1432, pp. 141–173. Springer, Berlin (1990)

    Chapter  Google Scholar 

  11. Fan, Y.: The method of the Yu-Ding theorem and its application. Math. Struct. Comput. Sci. 19(1), 207–215 (2009)

    Article  MATH  Google Scholar 

  12. Fan, Y., Lu, H.: Some properties of sw-reducibility. J. Nanjing Univ., Math. Biq. 22, 244–252 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Fan, Y., Yu, L.: Maximal pairs of c.e. reals in the computably Lipschitz degrees. Ann. Pure Appl. Log. 162(5), 357–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishmukhametov, S.: Weak recursive degrees and a problem of Spector. In: Recursion Theory and Complexity, Kazan, 1997. de Gruyter Ser. Log. Appl., vol. 2, pp. 81–87. de Gruyter, Berlin (1999)

    Google Scholar 

  15. Jockusch, C.G. Jr.: Three easy constructions of recursively enumerable sets. In: Logic Year 1979–80, Proc. Seminars and Conf. Math. Logic, Univ. Connecticut, Storrs, CT, 1979/80. Lecture Notes in Math., vol. 859, pp. 83–91. Springer, Berlin (1981)

    Google Scholar 

  16. Lewis, A.E.M., Barmpalias, G.: Randomness and the linear degrees of computability. Ann. Pure Appl. Log. 145(3), 252–257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  18. Soare, R.I.: Computability theory and differential geometry. Bull. Symb. Log. 10(4), 457–486 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu, L., Ding, D.: There is no SW-complete c.e. real. J. Symb. Log. 69(4), 1163–1170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zambella, D.: On sequences with simple initial segments. ILLC technical report, ML-1990-05, University of Amsterdam (1990)

Download references

Acknowledgements

We are grateful to the anonymous referees of Theory of Computing Systems for their helpful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ambos-Spies.

Additional information

The main results of this paper where obtained when the second and third authors visited the University of Heidelberg in the spring of 2008, partially supported by the Sino-German binational grant “Algorithmic Foundation of Numerical Computations” (DFG 446 CHV 113/240/0-1 and NSCF 10711130658). The fourth author has been partially supported by the DFG grant “Computable Randomness and Dimension” (ME 1806/3-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambos-Spies, K., Ding, D., Fan, Y. et al. Maximal Pairs of Computably Enumerable Sets in the Computably Lipschitz Degrees. Theory Comput Syst 52, 2–27 (2013). https://doi.org/10.1007/s00224-012-9424-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9424-1

Keywords

Navigation