Skip to main content

Advertisement

Log in

Improving the Space-Bounded Version of Muchnik’s Conditional Complexity Theorem via “Naive” Derandomization

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Many theorems about Kolmogorov complexity rely on existence of combinatorial objects with specific properties. Usually the probabilistic method gives such objects with better parameters than explicit constructions do. But the probabilistic method does not give “effective” variants of such theorems, i.e. variants for resource-bounded Kolmogorov complexity. We show that a “naive derandomization” approach of replacing these objects by the output of Nisan-Wigderson pseudo-random generator can give polynomial-space variants of such theorems.

Specifically, we improve the preceding polynomial-space analogue of Muchnik’s conditional complexity theorem. I.e., for all a and b there exists a program p of least possible length that transforms a to b and is simple conditional on b. Here all programs work in polynomial space and all complexities are measured with logarithmic accuracy instead of polylogarithmic one in the previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ajtai, M.: Approximate counting with uniform constant-depth circuits. In: Advances in Computational Complexity Theory, pp. 1–20. American Mathematical Society, Providence (1993)

    Google Scholar 

  2. Buhrman, H., Fortnow, L., Laplante, S.: Resource bounded Kolmogorov complexity revisited. SIAM J. Comput. 31(3), 887–905 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dvir, Z., Wigderson, A.: Kakeya sets, new mergers and old extractors. In: Proceedings of the 49th Annual FOCS08, pp. 625–633 (2008)

    Google Scholar 

  4. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM 56(4) (2009)

  5. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  6. Lu, C.-J., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: optimal up to constant factors. In: 35th Annual ACM Symposium, STOC 2003, pp. 602–611 (2003)

    Google Scholar 

  7. Muchnik, An.: Conditional complexity and codes. Theor. Comput. Sci. 271(1–2), 97–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Musatov, D.: Improving the space-bounded version of Muchnik’s conditional complexity theorem via “naive” derandomization. In: Kulikov, A., Vereshchagin, N. (eds.) CSR. Lecture Notes in Computer Science, vol. 6651, pp. 64–76 (2011). Conference version of this paper, an online version is available at arXiv:1009.5108

    Google Scholar 

  9. Musatov, D.: Space-bounded Kolmogorov extractors. In: Hirsch, E., Karhumaki, J., Lepisto, A., Prilutskii, M. (eds.) CSR. Lecture Notes in Computer Science, vol. 7353, pp. 266–277 (2012)

    Google Scholar 

  10. Musatov, D., Romashchenko, A., Shen, A.: Variations on Muchnik’s conditional complexity theorem. Theory Comput. Syst. 49(2), 227–245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63–70 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Syst. Sci. 49, 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Reingold, O., Shaltiel, R., Wigderson, A.: Extracting randomness via repeated condensing. SIAM J. Comput. 35(5), 1185–1209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Romashchenko, A.: Pseudo-random graphs and bit probe schemes with one-sided error. In: Kulikov, A., Vereshchagin, N. (eds.) CSR. Lecture Notes in Computer Science, vol. 6651, pp. 50–63 (2011)

    Google Scholar 

  16. Slepian, D., Wolf, J.K.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 471–480 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48(4), 860–879 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Uspensky, V.A., Vereshchagin, N.K., Shen, A.: Kolmogorov Complexity and Algorithmic Randomness. An unpublished book. (available in Russian at http://www.lif.univ-mrs.fr/~ashen/nafit/kolmbook.pdf, partial translation to English is available at http://kolmsem.math.ru/files/kolmeng.pdf

  19. Viola, E.: Randomness buys depth for approximate counting. In: Proceedings of 52nd IEEE FOCS, pp. 230–239 (2011)

    Google Scholar 

  20. Zimand, M.: Extracting the Kolmogorov complexity of strings and sequences from sources with limited independence. In: Proceedings of 26th STACS, pp. 697–708 (2009)

    Google Scholar 

  21. Zimand, M.: Impossibility of independence amplification in Kolmogorov complexity theory. In: Proceedings of MFCS 2010. LNCS, vol. 6281, pp. 701–712 (2010)

    Google Scholar 

  22. Zimand, M.: Symmetry of information and bounds on nonuniform randomness extraction via Kolmogorov extractors. In: Proceedings of 26th IEEE Conference in Computational Complexity, pp. 148–156 (2011)

    Google Scholar 

  23. Zimand, M.: On the optimal compression of sets in PSPACE. In: Proceedings of 18th International Symposium on Fundamentals of Computation Theory, pp. 65–77 (2011)

    Chapter  Google Scholar 

Download references

Acknowledgements

I want to thank my colleagues and advisors Andrei Romashchenko, Alexander Shen and Nikolay Vereshchagin for stating the problem and many useful comments. I also want to thank five anonymous referees for careful reading and precise comments. I am grateful to participants of seminars in Moscow State University, Moscow Institute of Physics and Technology and St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences for their attention and thoughtfulness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Musatov.

Additional information

Supported by ANR Sycomore, NAFIT ANR-08-EMER-008-01 and RFBR 09-01-00709-a grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musatov, D. Improving the Space-Bounded Version of Muchnik’s Conditional Complexity Theorem via “Naive” Derandomization. Theory Comput Syst 55, 299–312 (2014). https://doi.org/10.1007/s00224-012-9432-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9432-1

Keywords