Skip to main content

Advertisement

Log in

Collaborative Exploration of Trees by Energy-Constrained Mobile Robots

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study the problem of exploration of a tree by mobile agents (robots) that have limited energy. The energy constraint bounds the number of edges that can be traversed by a single agent. We use a team of agents to collectively explore the tree and the objective is to minimize the size of this team. The agents start at a single node, the designated root of the tree and the height of the tree is assumed to be less than the energy bound B of the agents. The agents have local vision and communication capabilities; two agents can exchange information only when they are collocated at the same node. We provide an exploration algorithm for visiting all nodes of the unknown tree and we compare our algorithm with the optimal offline algorithm that has complete knowledge of the tree. Our algorithm has a competitive ratio of O(log B), independent of the number of nodes in the tree. We also show that this is the best possible competitive ratio for exploration of unknown trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that the only way to store information at a node is by having an agent stay at the node carrying this information.

References

  1. Albers, S., Henzinger, M. R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awerbuch, B., Betke, M., Singh, M.: Piecemeal graph learning by a mobile robot. Inf. Comput. 152, 155–172 (1999)

    Article  MATH  Google Scholar 

  3. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxés, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bȧrtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel, A., Mihalȧk, M.: Collaborative delivery with energy-constrained mobile robots. In: Suomela, J (ed.) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science, vol. 9988, pp 258–274. Springer (2016)

  5. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Graf, D., Hackfeld, J., Penna, P.: Energy-efficient delivery by heterogeneous mobile agents. In: Heribert, V., Brigitte, V. (eds.) Proc. 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017) LIPIcs, vol. 66, pp 10:1–10:14 (2017)

  6. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing (STOC ’98), pp 269–278. ACM, New York (1998)

  7. Betke, M., Rivest, R. L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(23), 231–254 (1995)

    Google Scholar 

  8. Brooks, R. A., Flynn, A. M.: Fast, cheap and out of control: A robot invasion of the solar system. J. Br. Interplanet. Soc. 42, 478–485 (1989)

    Google Scholar 

  9. Chalopin, J., Das, S., Mihalȧk, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) Algorithms for Sensor Systems. ALGOSENSORS 2013. Lecture Notes in Computer Science, vol. 8243, pp 111–122. Springer (2013)

  10. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: Suomela, J. (ed.) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science, vol. 9988, pp 275–288. Springer (2016)

  11. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science, vol. 9439, pp 357–369. Springer (2015)

  12. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algor. 51, 38–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duncan, C. A., Kobourov, S. G., Anil Kumar, V. S.: Optimal constrained graph exploration. In: Proc. Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 807–814. Society for Industrial and Applied Mathematics Philadelphia (2001)

  15. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-Aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) Architecture of Computing Systems - ARCS 2006. Lecture Notes in Computer Science, vol. 3894, pp 341–351. Springer (2006)

  16. Dynia, M., Kutylowski, J., Meyer auf der Heide, F., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) Mathematical Foundations of Computer Science 2006 (MFCS). Lecture Notes in Computer Science, vol. 4162, pp 327–338. Springer (2006)

  17. Dynia, M., Lopuszanski, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) Structural Information and Communication Complexity. SIROCCO 2007. Lecture Notes in Computer Science, vol. 4474, pp 41–50. Springer (2007)

  18. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2-3), 331–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: New results on old and new algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming (ICALP 2011) Lecture Notes in Computer Science, vol. 6756, pp 478–489. Springer (2011)

  21. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proc. Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2012), pp 27–36. ACM, New York (2012)

  22. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ANR projects MACARON (anr-13-js02-0002) and ANCOR (anr-14-CE36-0002-01), and by the Polish National Science Center grant DEC-2011/02/A/ST6/00201. The second author would like to thank Krzysztof Kwaśniewski for interesting discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Das.

Additional information

Some of the results of this paper have been presented at the 22nd Colloquium on Structural Information and Communication Complexity (SIROCCO), Spain 2015 [11].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Dereniowski, D. & Karousatou, C. Collaborative Exploration of Trees by Energy-Constrained Mobile Robots. Theory Comput Syst 62, 1223–1240 (2018). https://doi.org/10.1007/s00224-017-9816-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9816-3

Keywords

Navigation