Skip to main content
Log in

The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We show that the conjugacy problem in a wreath product AB is uniform-TC0-Turing-reducible to the conjugacy problem in the factors A and B and the power problem in B. If B is torsion free, the power problem in B can be replaced by the slightly weaker cyclic submonoid membership problem in B. Moreover, if A is abelian, the cyclic subgroup membership problem suffices, which itself is uniform-AC0-many-one-reducible to the conjugacy problem in AB. Furthermore, under certain natural conditions, we give a uniform TC0 Turing reduction from the power problem in AB to the power problems of A and B. Together with our first result, this yields a uniform TC0 solution to the conjugacy problem in iterated wreath products of abelian groups – and, by the Magnus embedding, also in free solvable groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990). https://doi.org/10.1016/0022-0000(90)90022-D

    Article  MATH  Google Scholar 

  2. Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search problem in groups, and its applications to cryptography. Groups Complex. Cryptol. 4, 135–165 (2012). https://doi.org/10.1515/gcc-2016-0012

    MathSciNet  MATH  Google Scholar 

  3. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1), 116–144 (1911). https://doi.org/10.1007/BF01456932

    Article  MathSciNet  MATH  Google Scholar 

  4. Diekert, V., Myasnikov, A. G., Weiß, A.: Conjugacy in baumslag’s group, generic case complexity, and division in power circuits. In: Latin American Theoretical Informatics Symposium, pp 1–12 (2014)

  5. Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complex. Cryptol. 1, 199–205 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Gul, F., Sohrabi, M., Ushakov, A.: Magnus embedding and algorithmic properties of groups F/N (d). Trans. Amer. Math. Soc. 369(9), 6189–6206 (2017). https://doi.org/10.1090/tran/6880

    Article  MathSciNet  MATH  Google Scholar 

  7. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001, Proceedings, Lecture Notes in Computer Science, vol. 2076, pp 104–114. Springer (2001)

  8. Hesse, W., Allender, E., Barrington, D. A. M.: Uniform constant-depth threshold circuits for division and iterated multiplication. JCSS 65, 695–716 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Kargapolov, M. I., Remeslennikov, V. N.: The conjugacy problem for free solvable groups. Algebra i Logika Sem. 5(6), 15–25 (1966)

    MathSciNet  MATH  Google Scholar 

  10. Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.S., Park, C.: New public-key cryptosystem using braid groups. In: Advances in cryptology—CRYPTO 2000 (Santa Barbara, CA), Lecture Notes in Computer Science. https://doi.org/10.1007/3-540-44598-6_10, vol. 1880, pp 166–183. Springer, Berlin (2000)

  11. König, D., Lohrey, M.: Evaluation of circuits over nilpotent and polycyclic groups. Algorithmica (2017). https://doi.org/10.1007/s00453-017-0343-z

  12. Krebs, A., Lange, K., Reifferscheid, S.: Characterizing TC0 in terms of infinite groups. Theory Comput. Syst. 40 (4), 303–325 (2007). https://doi.org/10.1007/s00224-006-1310-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Lange, K., McKenzie, P.: On the complexity of free monoid morphisms. In: Chwa, K., Ibarra, O.H. (eds.) ISAAC 1998, Proceedings, Lecture Notes in Computer Science. https://doi.org/10.1007/3-540-49381-6_27, vol. 1533, pp 247–256. Springer (1998)

  14. Maciel, A., Thérien, D.: Threshold circuits of small majority-depth. Inf. Comput. 146(1), 55–83 (1998). https://doi.org/10.1006/inco.1998.2732

    Article  MathSciNet  MATH  Google Scholar 

  15. Magnus, W.: On a theorem of Marshall Hall. Ann. of Math. (2) 40, 764–768 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matthews, J.: The conjugacy problem in wreath products and free metabelian groups. Trans. Amer. Math. Soc. 121, 329–339 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, C.F. III: On group-theoretic decision problems and their classification, Ann. of Math. Studies, vol. 68. Princeton University Press, NJ (1971)

    Google Scholar 

  18. Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word and geodesic problems in free solvable groups. Trans. Amer. Math. Soc. 362(9), 4655–4682 (2010). https://doi.org/10.1090/s0002-9947-10-04959-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Myasnikov, A., Vassileva, S., Weiß, A.: The conjugacy problem in free solvable groups and wreath products of abelian groups is in T C 0. In: CSR 2017. https://doi.org/10.1007/978-3-319-58747-9_20, pp 217–231. Proceedings (2017)

  20. Myasnikov, A., Vassileva, S., Weiss, A.: Log-Space Complexity of the Conjugacy Problem in Wreath Products, chap. 12, pp. 215–236. World Scientific (2017). https://doi.org/10.1142/9789813204058_0012

  21. Myasnikov, A., Weiß, A.: TC0 circuits for algorithmic problems in nilpotent groups. ArXiv e-prints (2017)

  22. Remeslennikov, V., Sokolov, V. G.: Certain properties of the Magnus embedding. Algebra i logika 9(5), 566–578 (1970)

    Article  MathSciNet  Google Scholar 

  23. Robinson, D.: Parallel algorithms for group word problems. Ph.D. thesis, University of California, San Diego (1993)

    Google Scholar 

  24. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Engrg. Comm. Comput. 17, 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vassileva, S.: Polynomial time conjugacy in wreath products and free solvable groups. Groups Complex. Cryptol. 3(1), 105–120 (2011). https://doi.org/10.1515/GCC.2011.005

    MathSciNet  MATH  Google Scholar 

  26. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Waack, S.: The parallel complexity of some constructions in combinatorial group theory, pp 492–498. Springer-Verlag New York, Inc., New York (1990)

  28. Wang, L., Wang, L., Cao, Z., Okamoto, E., Shao, J.: New constructions of public-key encryption schemes from conjugacy search problems. In: Information security and cryptology, Lecture Notes in Comput. Sci. https://doi.org/10.1007/978-3-642-21518-6_1, vol. 6584, pp 1–17. Springer, Heidelberg (2011)

  29. Weiß, A.: A logspace solution to the word and conjugacy problem of generalized Baumslag-Solitar groups. In: Algebra and computer science, Contemporary Mathematics, vol. 677, pp 185–212. American Mathematics Society, Providence (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Weiß.

Additional information

This article is part of the Topical Collection on Computer Science Symposium in Russia

The results of this paper were obtained with the support of the Russian Science Foundation (project No. 17-11-0117). Most parts of this research have been conducted while the third author was at Stevens Institute of Technology. In Stuttgart he was partially supported by the DFG-project: DI 435/7-1 “Algorithmic problems in group theory”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miasnikov, A., Vassileva, S. & Weiß, A. The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0. Theory Comput Syst 63, 809–832 (2019). https://doi.org/10.1007/s00224-018-9849-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-9849-2

Keywords

Navigation