Skip to main content
Log in

Dichotomy for Holant Problems on the Boolean Domain

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special cases. We prove a complexity dichotomy theorem for \(\text {Holant}^{*}(\mathcal {F})\), where \({\mathcal {F}}\) is a set of constraint functions on Boolean variables and taking complex values. The constraint functions need not be symmetric functions. We identify four classes of problems which are polynomial time computable; all other problems are proved to be #P-hard. The main proof technique and indeed the formulation of the theorem use holographic algorithms and reductions. By considering these counting problems with the broader scope that allows complex-valued constraint functions, we discover surprising new tractable classes, which are associated with isotropic vectors, i.e., a (non-zero) vector whose dot product with itself is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. To avoid any difficulties with models of computation, we restrict to functions taking algebraic numbers in \(\mathbb {C}\).

  2. B. Szegedy [45] studied an edge coloring model, which is identical to Holant problems on a general domain, with a single symmetric constraint function per each arity.

  3. In this paper, we actually present it slightly differently, in order to give a more succinct proof.

References

  1. Backens, M.: A New Holant Dichotomy Inspired by Quantum Computation. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw, pp. 16:1–16:14 (2017)

  2. Backens, M.: A Complete Dichotomy for Complex-Valued Holantc. In: 45Th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pp. 12:1–12:14 (2018)

  3. Baxter, R. J.: Exactly solved models in statistical mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  4. Bulatov, A. A.: The complexity of the counting constraint satisfaction problem. J. ACM 60(5), 34:1–34:41 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bulatov, A. A., Dyer, M. E., Goldberg, L. A., Jalsenius, M., Jerrum, M., Richerby, D.: The complexity of weighted and unweighted #CSP. J. Comput. Syst. Sci. 78(2), 681–688 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bulatov, A. A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2-3), 148–186 (2005)

    Article  MathSciNet  Google Scholar 

  7. Cai, J., Chen, X.: A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-Negative Weights. In: 51Th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp 437–446. IEEE Computer Society, Las Vegas (2010)

  8. Cai, J., Chen, X.: Complexity dichotomies for counting problems. Cambridge University Press, Cambridge (2017)

  9. Cai, J., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. SIAM J. Comput. 42(3), 924–1029 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cai, J., Guo, H., Williams, T.: The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems. In: 55Th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 601–610, Philadelphia (2014)

  11. Cai, J., Lu, P.: Holographic algorithms: From art to science. J. Comput. Syst. Sci. 77(1), 41–61 (2011)

    Article  MathSciNet  Google Scholar 

  12. Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems of Boolean domain. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1714–1728, San Francisco (2011)

  13. Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1278–1295, New Orleans (2013)

  14. Cai, J., Lu, P., Xia, M.: Dichotomy for real Holantc problems. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 1802–1821, New Orleans (2018)

  15. Cai, J. Y., Govorov, A.: Perfect matchings, rank of connection tensors and graph homomorphisms. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pp. 476–495. Society for Industrial and Applied Mathematics, Philadelphia (2019)

  16. Cai, J. Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and holographic reductions for hardness. In: FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society, Washington (2008)

  17. Cai, J. Y., Lu, P., Xia, M.: Holant Problems and Counting CSP. In: Mitzenmacher, M. (ed.) STOC, pp 715–724. ACM (2009)

  18. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125(1), 1–12 (1996)

    Article  MathSciNet  Google Scholar 

  19. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Siam Monographs On Discrete Mathematics And Applications (2001)

  20. Dyer, M. E., Goldberg, L. A., Jalsenius, M., Richerby, D.: The Complexity of Approximating Bounded-Degree Boolean #CSP. In: Marion, J., Schwentick, T. (eds.) STACS, LIPIcs, vol. 5, pp 323–334. Schloss Dagstuhl - Leibniz-Zentrum fu̇r Informatik (2010)

  21. Dyer, M. E., Goldberg, L. A., Jerrum, M.: The complexity of weighted Boolean #CSP. SIAM J. Comput. 38(5), 1970–1986 (2009)

    Article  MathSciNet  Google Scholar 

  22. Dyer, M. E., Goldberg, L. A., Jerrum, M.: An approximation trichotomy for Boolean #CSP. J. Comput. Syst. Sci. 76(3-4), 267–277 (2010)

    Article  MathSciNet  Google Scholar 

  23. Dyer, M. E., Goldberg, L. A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6), 27:1–27:23 (2007)

  24. Dyer, M. E., Greenhill, C. S.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3-4), 260–289 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Dyer, M. E., Richerby, D.: On the complexity of #CSP. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp 725–734. ACM, Cambridge (2010)

  26. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism of graphs. J. AMS 20, 37–51 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Goldberg, L. A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010)

    Article  MathSciNet  Google Scholar 

  28. Goldberg, L. A., Jerrum, M.: Approximating the partition function of the ferromagnetic potts model. J. ACM 59(5), 25:1–25:31 (2012)

    Article  MathSciNet  Google Scholar 

  29. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser. B 48(1), 92–110 (1990)

    Article  MathSciNet  Google Scholar 

  30. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. Hadrons Nucl. 31(1), 253–258 (1925)

    MATH  Google Scholar 

  31. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the ising model. SIAM J. Comput. 22(5), 1087–1116 (1993)

    Article  MathSciNet  Google Scholar 

  32. Jerrum, M., Sinclair, A.: The Markov Chain Monte Carlo Method: an Approach to Approximate Counting and Integration. In: Approximation Algorithms for NP-Hard Problems, pp. 482–520. PWS Publishing (1996)

  33. Kasteleyn, P. W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)

    Article  Google Scholar 

  34. Kasteleyn, P. W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp 43–110. Academic Press, London (1967)

  35. Ladner, R. E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)

    Article  MathSciNet  Google Scholar 

  36. Lee, T., Yang, C.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410–419 (1952)

    Article  MathSciNet  Google Scholar 

  37. Lieb, E., Sokal, A.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80(2), 153–179 (1981)

    Article  MathSciNet  Google Scholar 

  38. Lin, J., Wang, H.: The Complexity of Holant Problems over Boolean Domain with Non-Negative Weights. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp 29:1–29:14, Warsaw (2017)

  39. Lovász, L.: Operations with structures. Acta Math. Hung. 18, 321–328 (1967)

    Article  MathSciNet  Google Scholar 

  40. Madras, N., Randall, D.: Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab. 12(2), 581–606 (2002)

    Article  MathSciNet  Google Scholar 

  41. McCoy, B., Wu, T.: The two-dimensional Ising model. Harvard University Press, Cambridge (1973)

  42. Onsager, L.: Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys. Rev. 65(3-4), 117–149 (1944)

    Article  MathSciNet  Google Scholar 

  43. Randall, D.: Mixing. In: 44Th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pp. 4–15 (2003)

  44. Schaefer, T. J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226, San Diego (1978)

  45. Szegedy, B.: Edge coloring models and reflection positivity. J. Amer. Math. Soc. 20, 969–988 (2007)

    Article  MathSciNet  Google Scholar 

  46. Temperley, H. N. V., Fisher, M. E.: Dimer problem in statistical mechanics c an exact result. Philos. Mag. 6, 1061 C 1063 (1961)

    Article  MathSciNet  Google Scholar 

  47. Valiant, L. G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254 (2002)

    Article  MathSciNet  Google Scholar 

  48. Valiant, L. G.: Accidental algorthims. In: FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. https://doi.org/10.1109/FOCS.2006.7, pp 509–517. IEEE Computer Society, Washington (2006)

  49. Valiant, L. G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008). https://doi.org/10.1137/070682575

    Article  MathSciNet  Google Scholar 

  50. Welsh, D.: Complexity: knots, colourings and counting. Cambridge University Press, Cambridge (1993)

  51. Yang, C.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85(5), 808–816 (1952)

    Article  MathSciNet  Google Scholar 

  52. Yang, C., Lee, T.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87(3), 404–409 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank Miriam Backens, Xi Chen, Martin Dyer, Leslie Ann Goldberg, Zhiguo Fu, Heng Guo, Michael Kowalczyk, Les Valiant and Tyson Williams for discussions and comments. We also thank the anonymous referees of SODA 2011 who read our submission and made very constructive comments. Last but not least we sincerely thank the anonymous referees for the journal submission version. Many comments have been incorporated in this revised version with hopefully an improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yi Cai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in ACM-SIAM Symposium on Discrete Algorithms (SODA) 2011 [12]. Jin-Yi Cai is supported by NSF CCF-1714275. Pinyan Lu is supported by Science and Technology Innovation 2030 “New Generation of Artificial Intelligence” Major Project No.(2018AAA0100903), NSFC grant 61922052 and 61932002, Program for Innovative Research Team of Shanghai University of Finance and Economics (IRTSHUFE) and the Fundamental Research Funds for the Central Universities. Mingji Xia is supported by NSFC grant 61932002, and the Youth Innovation Promotion Association, CAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, JY., Lu, P. & Xia, M. Dichotomy for Holant Problems on the Boolean Domain. Theory Comput Syst 64, 1362–1391 (2020). https://doi.org/10.1007/s00224-020-09983-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-020-09983-8

Keywords

Navigation