Abstract
In languages with unbounded demonic and angelic nondeterminacy, functions acquire a surprisingly rich set of fixpoints. We show how to construct these fixpoints, and describe which ones are suitable for giving a meaning to recursively defined functions. We present algebraic laws for reasoning about them at the language level, and construct a model to show that the laws are sound. The model employs a new kind of power domain-like construct for accommodating arbitrary nondeterminacy.
Similar content being viewed by others
References
Aarts C., Backhouse R.C., Boiten E.A., Doornbos H., Hoogendijk P.F., Voermans Ed, Gasteren N., Geldrop R. and Woude J. (1995). Fixed-point calculus. Inf. Process. Lett. 53(3): 131–136
Abramsky, S., Jung, A.: Domain theory. In: Abramsky S., Gabbay D.M., Maibaum T.S.E. (ed.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford, (1994)
Apt K.R. and Plotkin G.D. (1986). Countable nondeterminism and random assignment. J. ACM 33(4): 724–767
Back, R.-J.R.: Correctness Preserving Program Refinements: Proof Theory and Applications. Tract 131. Mathematisch Centrum, Amsterdam (1980)
Back R.J.R. and Wright J. (1990). Duality in specification languages: a lattice-theoretical approach. Acta Inf. 27(7): 583–625
Backhouse, K.: Abstract Interpretation of Domain-Specific Embedded Languages. PhD thesis, Oxford University (2002)
Backhouse, R.: Galois connections and fixed point calculus. In: Backhouse R.C., Crole R.L., Gibbons J. (ed.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, Lecture Notes in Computer Science, vol. 2297, pp. 89–148. Springer, Heidelberg (2000)
Bartenschlager G. (1995). Free bounded distributive lattices over finite ordered sets and their skeletons. Acta Math. Universitatis Comenianae 64: 1–23
Bekić, H.: Definable operations in general algebras, and the theory of automata and flowcharts, Lecture Notes in Computer Science, vol. 177, pp. 30–55. Springer, Hedelberg (1984)
Birkhoff, G.: Lattice Theory, volume 25 of Colloquium Publications. American Mathematical Society, 3rd edition (1967)
Broy M. (1986). A theory for nondeterminism, parallelism, communication and concurrency. Theor. Comput. Sci. 45(1): 1–61
Chen Y. (2003). A fixpoint theory for non-monotonic parallelism. Theor. Comput. Sci. 308(1–3): 367–392
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, (1990)
de Bakker J.W. (1980). Mathematical Theory of Program Correctness. Prentice-Hall, Englewood cliffs
Dijkstra E.W. (1976). A Discipline of programming. Prentice Hall, Englewood cliffs
Flannery K.E. and Martin J.J. (1990). The Hoare and Smith power domain constructors commute under composition. J. Comput. Syst. Sci. 40(2): 125–135
Gunter, C.A.: Relating total and partial correctness interpretations of non-deterministic programs. In: POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 306–319. ACM Press, New York (1990)
Heckmann R. (1991). Lower and upper power domain constructions commute on all cpos. Inf. Process. Lett. 40(1): 7–11
Heckmann R. (1991). Power domain constructions. Sci. Comput. Program. 17(1–3): 77–117
Heckmann, R.: An upper power domain construction in terms of strongly compact sets. In: Stephen D., Brookes et al. (ed.) MFPS. Lecture Notes in Computer Science, vol. 598, pp. 272–293. Springer, Heidelberg (1991)
Heckmann, R.: Power domains supporting recursion and failure. In: Raoult J.-C. (ed.) CAAP, Lecture Notes in Computer Science, vol. 581, pp. 165–181. Springer, Heidelburg (1992)
Hennessy, M.: Powerdomains and nondeterministic recursive definitions. In: Ciancaglini M., Montanari U (eds.) Symposium on Programming, Lecture Notes in Computer Science, vol. 137, pp. 178–193, Springer, Heidelberg (1982)
Hennessy, M., Plotkin, G.D.: Full abstraction for a simple parallel programming language. In: Becvár J. (ed.) MFCS, Lecture Notes in Computer Science. vol. 74, pp. 108–120. Springer, Heidelberg (1979)
Hesselink W.H. (1994). Nondeterminacy and recursion via stacks and games. Theor. Comput. Sci. 124(2): 273–295
Hesselink W.H. (1988). Interpretations of recursion under unbounded nondeterminacy. Theor. Comput. Sci. 59: 211–234
Hesselink W.H. (1989). Predicate-transformer semantics of general recursion. Acta Inf. 26(4): 309–332
Hesselink W.H. (1992). Programs, Recursion and Unbounded Choice. Number 27 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, London
Hitchcock, P., Park, D.: Induction rules and termination proofs. In: IRIA Conference on Automata, Languages, and Programming Theory, pp. 225–251. North-Holland, Amsterdam (1972)
Hoofman, R.: Powerdomains. Technical Report RUU-CS-87-23, Institute of Information and Computing Sciences (1987)
Jacobs D. and Gries D. (1985). General correctness: a unification of partial and total correctness. Acta Inf. 22(1): 67–83
Main, M.G.: Free constructions of powerdomains. In: Melton A. (ed.) Mathematical Foundations of Programming Semantics, Lecture Notes in Computer Science, vol. 239, pp. 162–183. Springer, Heidelberg (1985)
Morris J.M. (1987). A theoretical basis for stepwise refinement and the programming calculus. Sci. Comput. Program. 9: 287–306
Morris, J.M.: Augmenting types with unbounded demonic and angelic nondeterminacy. In: Proceedings of the 7th International Conference on Mathematics of Program Construction, vol. 3125, pp. 274–288. Springer, Heidelberg (2004)
Morris J.M. and Bunkenburg A. (1999). Specificational functions. ACM. Trans. Program. Lang. Syst. 21: 677–701
Morris J.M. and Bunkenburg A. (2002). A source of inconsistency in theories of nondeterministic functions. Sci. Comput. Program. 43(1): 77–89
Morris, J.M., Tyrrell M.: Dually nondeterministic functions and functional refinement. Submitted, (2006)
Morris, J.M., Tyrrell M.: Dual unbounded nondeterminacy and recursive functions: a conservation proof. Technical Report CA-0106, School of Computing, Dublin City University, (2006)
Nelson G. (1989). A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang. Syst. 11(4): 517–561
Plotkin G. (1976). A powerdomain construction. SIAM J. Comput. 5(3): 452–487
Plotkin, G.: Domain theory. Unpublished lecture notes (“The Pisa Notes”) (1983)
Schmidt D.A. (1986). Denotational Semantics. Allyn and Bacon, Boston
Smyth M.B. (1978). Power domains. J. Comput. Syst. Sci. 16(1): 23–26
Smyth, M.B.: Power domains and predicate transformers: a topological view. In: Diaz J. (ed.) Proceedings of the 10th Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 153, pp. 662–675. Springer, London (1983)
Tarski A. (1955). A lattice-theoretical fixed point theorem and its applications. Pac. J. Math. 5(2): 285–309
Tunnicliffe W.R. (1985). The free completely distributive lattice over a poset. Algebra Univers. 21: 133–135
Ward, N.: A Refinement calculus for nondeterministic expressions. PhD thesis, University of Queensland (1994)
Winskel G. (1993). The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cambridge
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morris, J.M., Tyrrell, M. Dual unbounded nondeterminacy, recursion, and fixpoints. Acta Informatica 44, 323–344 (2007). https://doi.org/10.1007/s00236-007-0049-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00236-007-0049-9