Skip to main content

Advertisement

Log in

Multi-tilde-bar expressions and their automata

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

The aim of this paper is to extend the family of Glushkov automata. This is achieved by designing new operators, the so-called multi-tilde-bar operators, that allow us to compute Glushkov functions for the associated extended expressions. Conversely an extended Glushkov automaton with \(n+1\) states can be converted into an extended expression with \(n\) occurrences of symbols. It leads to a characterization in terms of graphs of the family of extended Glushkov automata. Moreover, extended expressions are shown to be superpolynomially more succinct than standard expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155, 291–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchou, B., Duarte, D., Halfeld Ferrari, M., Laurent, D., Musicante, M.-A.: Schema evolution for XML: a consistency-preserving approach. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS, Lecture Notes in Computer Science, vol. 3153, pp. 876–888. Springer, Heidelberg (2004)

  • Brzozowski, J.A.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comput. EC-12(2) (1963)

  • Caron, P., Champarnaud, J.-M., Mignot L.: Multi-tilde operators and their Glushkov automata. In: Dediu, A.H., Ionescu, A.-M., Martín-Vide, C. (eds.) LATA, Lecture Notes in Computer Science, vol. 5457, pp. 290–301. Springer, Heidelberg (2009)

  • Caron P., Champarnaud J.-M., Mignot L.: A new family of regular operators fitting with the position automaton computation. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM, Lecture Notes in Computer Science, vol. 5404 , pp. 645–655. Springer, Heidelberg (2009)

  • Caron, P., Champarnaud, J.-M., Mignot, L.: Acyclic automata and small expressions using multi-tilde-bar operators. Theor. Comput. Sci. 411(38–39), 3423–3435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Caron, P., Flouret, M.: On Glushkov \(\mathbb{K}\)-graph. In: Martin-Vide, C. (ed.) Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory, Scientific Applications of Language Methods, pp. 103–132. World Scientific, Singapore (2010)

    Google Scholar 

  • Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theor. Comput. Sci. 233(1–2), 75–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Champarnaud, J.-M., Coulon, F., Paranthoën, T.: Compact and fast algorithms for safe regular expression search. Int. J. Comput. Math. 81(4), 383–401 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Champarnaud, J.-M., Ponty, J.-L., Ziadi, D.: From regular expressions to finite automata. Int. J. Comput. Math. 72, 415–431 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives, and finite automaton constructions. Theor. Comput. Sci. 239(1), 137–163 (2002)

    Article  MathSciNet  Google Scholar 

  • Ehrenfeucht, A., Zeiger, H.-P.: Complexity measures for regular expressions. J. Comput. Syst. Sci. 12(2), 134–146 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

    MathSciNet  MATH  Google Scholar 

  • Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53 (1961)

    Article  Google Scholar 

  • Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: Amadio, R.M. (eds.) FoSSaCS, Lecture Notes in Computer Science, vol. 4962, pp. 273–286. Springer, Heidelberg (2008)

  • Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies, Ann. Math. Studies vol. 34, pp. 3–41. Princeton University Press, Princeton (1956)

  • McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for automata. IEEE Trans. Electron. Comput. 9, 39–57 (1960)

    Article  Google Scholar 

  • Mignot, L.: Des Codes Barres pour les Langages Rationnels. PhD thesis, LITIS, Université de Rouen, France, 2010. available online, URL: http://ludovicmignot.free.fr

Download references

Acknowledgments

We wish to thank H. Gruber who pointed out the superpolynomial factorization of multi-tilde-bar expression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Caron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, P., Champarnaud, JM. & Mignot, L. Multi-tilde-bar expressions and their automata. Acta Informatica 49, 413–436 (2012). https://doi.org/10.1007/s00236-012-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-012-0167-x

Keywords