Skip to main content
Log in

Big data interpolation using functional representation

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Given a large set of measurement data, in order to identify a simple function that captures the essence of the data, we suggest representing the data by an abstract function, in particular by polynomials. We interpolate the datapoints to define a polynomial that would represent the data succinctly. The interpolation is challenging, since in practice the data can be noisy and even Byzantine where the Byzantine data represents an adversarial value that is not limited to being close to the correct measured data. We present two solutions, one that extends the Welch-Berlekamp technique (Error correction for algebraic block codes, 1986) to eliminate the outliers appearance in the case of multidimensional data, and copes with discrete noise and Byzantine data; and the other solution is based on Arora and Khot (J Comput Syst Sci 67(2):325–340, 2003) method which handles noisy data, and we have generalized it in the case of multidimensional noisy and Byzantine data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ar, S., Lipton, R.J., Rubinfeld, R., Sudan, M.: Reconstructing algebraic functions from mixed data. In FOCS. IEEE Computer Society, pp. 503–512 (1992)

  2. Arora, S., Khot, S.: Fitting algebraic curves to noisy data. J. Comput. Syst. Sci. 67(2), 325–340 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertino, E., Bernstein, P., Agrawal, D., Davidson, S., Dayal, U., Franklin, M., Gehrke, J., Haas, L., Halevy, A., Han, J., et al.: Challenges and opportunities with big data. (2011)

  4. Daltrophe, H., Dolev, S., Lotker, Z.: Big data interpolation: an efficient sampling alternative for sensor data aggregation. Algo. Sensors 2012(2013), 66–77 (2013)

    Google Scholar 

  5. Davis, P.J.: Interpolation and approximation. Dover Publications, New York (1975)

    MATH  Google Scholar 

  6. Ditzian, Z.: Multivariate Bernstein and Markov inequalities. J. Approx. Theory 70(3), 273–283 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wirel. Commun. 14(2), 70–87 (2007)

    Article  Google Scholar 

  8. Jesus, P., Baquero, C., Almeida, P.S.: A survey of distributed data aggregation algorithms. arXiv preprint arXiv:1110.0725 (2011)

  9. Kahn, Joseph M., Katz, Randy H., Pister, Kristofer SJ.: Next century challenges: mobile networking for “Smart Dust”. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking. ACM, pp. 271–278 (1999)

  10. Madden, S.: From databases to big data. IEEE Internet Comput. 16, 3 (2012)

    Article  Google Scholar 

  11. Nürnberger, G.: Approximation by spline functions, vol. 1. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  12. Pinkus, A.: Weierstrass and approximation theory. J. Approx. Theory 107(1), 1–66 (2000). doi:10.1006/jath.2000.3508

    Article  MathSciNet  MATH  Google Scholar 

  13. Rajagopalan, R., Varshney, P.K.: 2006. A survey, Data aggregation techniques in sensor networks (2006)

  14. Rivlin, T.J.: An introduction to the approximation of functions. Dover Publications, New York (2003)

    MATH  Google Scholar 

  15. Saniee, R.: A simple expression for multivariate lagrange interpolation. (2008)

  16. Sudan, M.: Decoding of Reed Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ullman, Jeffrey D., Aho, Alfred V., Hopcroft, John E.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  18. Welch, L.R., Berlekamp, E.R.: Error correction for algebraic block codes. US Patent 4,633,470, 30 Dec 1986

Download references

Acknowledgements

The research was partially supported by the Rita Altura Trust Chair in Computer Sciences; grant of the Ministry of Science, Technology and Space, Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Foreign Affairs, Italy; the Ministry of Science, Technology and Space, Infrastructure Research in the Field of Advanced Computing and Cyber Security; and the Israel National Cyber Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadassa Daltrophe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daltrophe, H., Dolev, S. & Lotker, Z. Big data interpolation using functional representation. Acta Informatica 55, 213–225 (2018). https://doi.org/10.1007/s00236-016-0288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-016-0288-8

Keywords

Navigation