
Reasoning with Examples: Propositional Formulae
and Database Dependencies

Citation
Khardon, Roni, Heikki Mannila, and Dan Roth. 1995. Reasoning with Examples: Propositional
Formulae and Database Dependencies. Harvard Computer Science Group Technical Report
TR-15-95.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620470

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620470
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Reasoning%20with%20Examples:%20Propositional%20Formulae%20and%20Database%20Dependencies&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Reasoning with Examples: Propositional

Formulae and Database Dependencies

Roni Khardon

Heikki Mannila

and

Dan Roth

TR-15-95

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

Reasoning with Examples:

Propositional Formulae and Database Dependencies

Roni Khardon

�

Harvard University

Cambridge, MA 02138

Heikki Mannila

y

University of Helsinki

Dan Roth

z

Harvard University

Cambridge, MA 02138

June 13, 1995

Abstract

For humans, looking at how concrete examples behave is an intuitive way of deriving

conclusions. The drawback with this method is that it does not necessarily give the cor-

rect results. However, under certain conditions example-based deduction can be used to

obtain a correct and complete inference procedure. This is the case for Boolean formu-

lae (reasoning with models) and for certain types of database integrity constraints (the

use of Armstrong relations). We show that these approaches are closely related, and use

the relationship to prove new results about the existence and sizes of Armstrong rela-

tions for Boolean dependencies. Further, we study the problem of translating between

di�erent representations of relational databases, in particular we consider Armstrong

relations and Boolean dependencies, and prove some positive results in that context.

Finally, we discuss the close relations between the questions of �nding keys in relational

databases and that of �nding abductive explanations.

�

e-mail: roni@das.harvard.edu. Research supported by Center for Intelligent Control Systems under ARO contract

DAAL03-92-G-0115.

y

e-mail: mannila@cs.helsinki.�.

z

e-mail: danr@das.harvard.edu. Research supported by NSF grant CCR-92-00884 and by DARPA AFOSR-F4962-

92-J-0466.

1

1 Introduction

One of the major tasks in database systems as well as arti�cial intelligence systems is to express

some knowledge about the domain in question and then use this knowledge to determine the validity

of certain queries on the domain. This normally involves settling on a semantic implication relation

with respect to the knowledge representation.

Traditionally, a language L for expressing statements about objects in a class O is devised, and

� � L, a set of sentences, denotes the knowledge about the domain. The statement � 2 L, a single

sentence, represents a query in question. We are interested in knowing whether � logically implies

�, that is, whether we have that for each object m 2 O such that all sentences of � are true in m,

we also have that � is true in m.

It is normally argued that checking this semantic implication relation by using the above de�-

nition explicitly is impossible due to the large number of possible objects, and hence one needs to

�nd e�ciently implementable sound and complete axiomatizations for the problem.

Some theories on human reasoning [JL83], however, claim that humans typically argue by just

looking at some examples: one selects some objects m

i

2 O such that � is true, and checks whether

� is also true for these objects. If not, then one can make the correct conclusion that � does not

imply �; if � is true for all the examples m

i

, one concludes that � implies �. Of course, this

conclusion can be wrong.

There are, nevertheless, some domains where inference of this type can yield correct answers. A

dramatic example is give by Hong [Hon86], who proves that for certain types of geometric statements

one example (consisting of real numbers) is su�cient to prove or disprove any geometric theorem

about points, lines and circles in the plane. Moreover, he shows that one does not have to consider

more than a polynomial number of digits in the example (with respect to the number of objects

mentioned in the theorem).

In this paper we consider two areas where such reasoning with examples has been used, and

show that the methods are actually quite closely related.

The �rst area is in database integrity constraints, where so called Armstrong relations serve as

a single example capturing all implications of a set of sentences [Fag82b, Fag82a, BDFS84]. More

formally, if L is a set of database dependencies and � � L, then an Armstrong relation for � and L

is a database relation r

�

such that for all � 2 L we have that � implies � if and only if r

�

satis�es

�. That is, the semantic implication relation for � reduces to the truth in a single example relation

r

�

.

The second area is in automated reasoning, where reasoning with models has been recently

studied [KKS93, KR94b]. Assume the language consists of propositional formulae, and the objects

are models (i.e., truth assignments). A set of models M � O is a su�cient set of examples for �

and L, if for all � 2 L we have: if for all m 2M � is true in m, then � implies �. That is, instead

of having to look at all objects to determine semantic implication, it is su�cient to look only at a

sub-collection of the objects. In particular, the set of characteristic models has this property.

In these applications it is of course important that the example relation or the set of examples is

small; otherwise there is no sense in using example-based deduction. The size issue has been treated

for database dependencies in [BDFS84, MR86] and for propositional formulae in [KKS93, KR94b].

In this paper we show that these two application areas of the general idea of example-based rea-

soning are actually very closely related. Namely, we show that the characteristic models of [KKS93]

are essentially the intersection generators for sets of functional dependencies in [BDFS84]. Further,

the correspondence holds for generalizations of characteristic models introduced in [KR94b].

We then apply this correspondence to get some new results. First, we prove some bounds for the

2

size of Armstrong relations for various types of database dependencies. We present a new family

of Bounded Disjunctive Dependencies, which generalizes the class of Functional Dependencies. We

show that this family enjoys Armstrong relations, and derive size bounds for its Armstrong relations.

Secondly, we show that the theory of reasoning with models can be of help for interactive design

of relational databases. It has been suggested [MR86] that in such scenarios it would be useful if

we could translate a set of sentences into the corresponding Armstrong relation and vice versa,

translate a given relation into a set of dependencies which it describes. An immediate corollary

from the equivalence shown here, and recent results on characteristic models [Kha95], is that the

complexity of the two translation problems is equivalent under polynomial reductions. While the

complexity of these problem is an open problem [MR86, EG94, FK94, Kha95], we show that results

from the theory of reasoning with models [KR94b] and computational learning theory [Bsh93] can

be used to derive some positive results. In particular, we show that a closed form (although not in

the form of functional dependencies) for a given relation can be found. Furthermore, we show that,

given a set of dependencies, an approximate Armstrong relation can be found, where approximate

is properly quanti�ed.

Lastly, we show another correspondence between the two domains. In particular, abductive

explanations for propositional formulae correspond to keys for relational schemas with Boolean

dependencies. We show how several results developed independently in the two domains are in fact

equivalent.

The paper is organized as follows: In Section 2 we describe the theory of reasoning with mod-

els. In Section 3 we introduce some of the basic notions in relational databases, and discuss the

correspondence between them and notions in the Boolean domain. In Sections 4, 5, 6 we show

the equivalence between Armstrong relations and characteristic models, and apply this relation to

get new results in to the domain of relational databases. In Section 7 we discuss the close rela-

tion between the study of abductive explanations in the Boolean domain and keys in relational

databases.

2 Reasoning with Models

In this section we describe the theory of reasoning with models, and then give applications in the

Boolean domain. We start with some notation. We consider a Boolean functions f : f0; 1g

n

!

f0; 1g. The elements in the set fx

1

; : : : ; x

n

g are called variables. Assignments in f0; 1g

n

are denoted

by x; y; z, and weight(x) denotes the number of 1 bits in the assignment x. A literal is either a

variable x

i

(called a positive literal) or its negation x

i

(a negative literal). A clause is a disjunction

of literals and a CNF formula is a conjunction of clauses. For example (x

1

_ x

2

) ^ (x

3

_ x

1

_ x

4

)

is a CNF formula with two clauses. A term is a conjunction of literals and a DNF formula is a

disjunction of terms. For example (x

1

^ x

2

) _ (x

3

^ x

1

^ x

4

) is a DNF formula with two terms.

A CNF formula is Horn if every clause in it has at most one positive literal. We note that every

Boolean function has many possible representations and in particular, both a CNF representation

and a DNF representation. The size of the CNF and DNF representation are, respectively, the

number of clauses and the number of terms in the representation.

An assignment x 2 f0; 1g

n

satis�es f if f(x) = 1. Such an assignment x is also called a model

of f . By \f implies g", denoted f j= g, we mean that every model of f is also a model of g.

Throughout the paper, when no confusion can arise, we identify a Boolean function f with the set

of its models, namely f

�1

(1). Observe that the connective \implies" (j=) used between Boolean

functions is equivalent to the connective \subset or equal" (�) used for subsets of f0; 1g

n

. That is,

f j= g if and only if f � g.

3

2.1 Theory

We start by describing some results of the Monotone Theory of Boolean functions, introduced by

Bshouty [Bsh93], and then use those to present the theory of reasoning with models, developed in

[KR94b]. All the proofs in this section are omitted; they can be found in [KR94b].

2.1.1 Monotone Theory

De�nition 2.1 (Order) We denote by � the usual partial order on the lattice f0; 1g

n

, the one

induced by the order 0 < 1. That is, for x; y 2 f0; 1g

n

, x � y if and only if 8i; x

i

� y

i

. For an

assignment b 2 f0; 1g

n

we de�ne x �

b

y if and only if x� b � y� b (Here � is the bitwise addition

modulo 2). We say that x > y if and only if x � y and x 6= y.

Intuitively, if b

i

= 0 then the order relation on the ith bit is the normal order; if b

i

= 1, the

order relation is reversed and we have that 1 <

b

i

0. We now de�ne:

The monotone extension of z 2 f0; 1g

n

with respect to b:

M

b

(z) = fx j x �

b

zg:

The monotone extension of f with respect to b:

M

b

(f) = fx j x �

b

z; for some z 2 fg:

The set of minimal assignments of f with respect to b:

min

b

(f) = fz j z 2 f; such that 8y 2 f; z 6>

b

yg:

The following claims lists some properties of M

b

. All are immediate from the de�nitions:

Claim 2.1 Let f; g : f0; 1g

n

! f0; 1g be Boolean functions. The operatorM

b

satis�es the following

properties:

(1) If f � g then M

b

(f) �M

b

(g).

(2) M

b

(f ^ g) �M

b

(f) ^M

b

(g).

(3) M

b

(f _ g) =M

b

(f) _M

b

(g).

(4) f �M

b

(f).

Claim 2.2 Let z 2 f . Then, for every b 2 f0; 1g

n

, there exists u 2 min

b

(f) such that M

b

(z) �

M

b

(u):

Using Claims 2.2 and 2.1 we get a characterization of the monotone extension of f :

Claim 2.3 The monotone extension of f with respect to b is:

M

b

(f) =

_

z2f

M

b

(z) =

_

z2min

b

(f)

M

b

(z):

Clearly, for every assignment b 2 f0; 1g

n

, f � M

b

(f). Moreover, if b 62 f , then b 62 M

b

(f) (since b

is the smallest assignment with respect to the order �

b

). Therefore:

f =

^

b2f0;1g

n

M

b

(f) =

^

b62f

M

b

(f):

The question is if we can �nd a small set of negative examples b, and use it to represent f as above.

4

De�nition 2.2 (Basis) A set B is a basis for f if f =

V

b2B

M

b

(f). B is a basis for a class of

functions F if it is a basis for all the functions in F .

Using this de�nition, the representation

f =

^

b2B

M

b

(f) =

^

b2B

_

z2min

b

(f)

M

b

(z) (1)

yields the following necessary and su�cient condition describing when x 2 f0; 1g

n

is positive for f :

Corollary 2.4 Let B be a basis for f , x 2 f0; 1g

n

. Then, x 2 f (i.e., f(x) = 1) if and only if for

every basis element b 2 B there exists z 2 min

b

(f) such that x �

b

z.

It is known that the size of the basis for a function f is bounded by the size of its CNF repre-

sentation, and that for every b the size of min

b

(f) is bounded by the size of its DNF representation.

There also exist functions f such that every basis for f is exponential in the size of of the DNF

representation of f .

2.1.2 Deduction

Recall that f j= � if and only if every model of f is also a model of �. We are interested in

answering deduction queries of the form f j= �, given some knowledge about f . In particular we

study the model based approach for answering such queries. Let � � f � f0; 1g

n

be a set of models.

The model-based algorithm, when presented with a query f j= �, performs the following: for all

the models z 2 � check whether �(z) = 1. If for some z, �(z) = 0 say \no"; otherwise say \yes".

By de�nition, if � = f this approach yields correct deduction. Thus for every function f there

exists an example-based approach to the deduction of f .

However, representing f by explicitly checking all the possible models of f is not plausible.

A model-based approach becomes feasible if � supports correct deduction and is small. In the

following we characterize a model-based knowledge base that provides for correct reasoning.

De�nition 2.3 Let F be a class of functions. For a knowledge base f 2 F we de�ne the set

� = �

B

f

of characteristic models to be the set of all minimal assignments of f with respect to the

basis B. Formally,

�

B

f

= [

b2B

fz 2 min

b

(f)g:

Next we discuss the notion of a least upper bound of a Boolean function [SK91], its relation to

the monotone theory and its usage in model-based reasoning.

De�nition 2.4 (Least Upper-bound) Let F ;G be classes of Boolean functions. Given f 2 F

we say that g 2 G is a G-least upper bound of f if and only if f � g and there is no f

0

2 G such

that f � f

0

� g.

Theorem 2.5 Let f be any Boolean function and G a class of all Boolean functions with basis B.

Then

f

B

lub

=

^

b2B

M

b

(f)

is a G-upper bound of f .

5

The above theorem shows that the logical function represented by the set �

B

f

, where B is a

basis for G, is the LUB of f in G. Nevertheless, this representation is su�cient to support exact

deduction with respect to queries in G:

Theorem 2.6 Let B be a basis for G, and let f 2 F and � 2 G. Then f j= � if and only if for

every u 2 �

B

f

; �(u) = 1.

Thus we need to look only at the set �

B

f

to decide whether f implies a set in G.

2.2 Applications

We now apply the general theory developed above to speci�c classes of Boolean functions.

We say that queries are common if they are taken from some common function class

1

as de�ned

below.

De�nition 2.5 A class of functions F is common if there is a small (polynomial size) �xed basis

for all f 2 F .

In [KR94b] it is shown that some important function classes are common. Those include: (1)

Horn-CNF formulas, (2) reversed Horn-CNF formulas (CNF with clauses containing at most one

negative literal), (3) k-quasi-Horn formulas (a generalization of Horn theories in which there are

at most k positive literals in each clause), (4) k-quasi-reversed-Horn formulas and (5) lognCNF

formulas (CNF in which the clauses contain at most O(logn) literals).

The basis for the class of Horn-CNF formulas is the set of assignmentsB

H

= fu 2 f0; 1g

n

j weight(u) �

n � 1g. The basis for the class of k-quasi-Horn formulas is the set of assignments B

H

k

= fu 2

f0; 1g

n

j weight(u) � n� kg. By
ipping all the bits in each of the basis elements one gets a basis

for the reversed classes. The basis for the class of log nCNF formulas is derived using a combina-

torial construction called an (n; k) set [ABN

+

92]. For more details see [KR94b]. Here we need the

following observations: (1) jB

H

j = n + 1, (2) jB

H

k

j = O(n

k

), and (3) jB

logn�CNF

j = O(n

3

).

We note that if we have two common classes, and correspondingly two bases then the union of

these bases is a union for the combined class. Hence, denoting by L

C

the set of formulas that can

be represented as a CNF with clauses from any of the above classes, we have that L

C

is a common

class. We denote the basis for L

C

by B

C

.

Theorem 2.7 Let f be a Boolean function on n variables. Then there exists a �xed set of models

� = �

B

C

f

, such that for any common query � 2 L

C

, model-based deduction using �, is correct.

2.3 The Size of �

The size of the model-based representation used is an important factor in the complexity of rea-

soning with it. The following lemma gives a bound on this size.

Lemma 2.8 Let B be a basis for the Boolean function f , and denote by jDNF(f)j the size of its

DNF representation. Then, the size of the model-based representation of f is

j�

B

f

j �

X

b2B

jmin

b

(f)j � jBj � jDNF (f)j:

1

Note that a �xed basis uniquely characterizes a family of Boolean functions which can be represented using it.

There are of course other ways to characterize classes of functions which do not correspond to any basis (e.g. some

subset of DNF).

6

We note that this bound is tight in the sense that for some functions the size of the DNF is

indeed needed. It does however allow for an exponential gap in other cases. Namely, there are

functions with an exponential size DNF and a linear size model-based representation [KR94b]. It

is also interesting to compare the size of this representation to the size of other representations

for functions. Examples in [KKS93] show that there are cases where the (Horn CNF) formula

representation is small and the model-based representation is exponentially large, and vice versa.

For a discussion of these issues see [KR94b].

3 Relational Databases

In this section we introduce some of the basic notions in relational databases, and discuss the

correspondence between them and notions in the Boolean domain.

3.1 Relations and Dependencies

We assume a �nite set U of attributes. A tuple (over U) is a mapping with domain U , and a

relation (over U) is a set of tuples (over U). If X � U , and if t is a tuple over U , then we denote

the restriction of t to X by t[X]. If R is a relation over U , then R[X] = ft[X] j t 2 Rg. If A is an

attribute of U , and if t is a tuple over U , then we may refer to t[A] as an entry, in the A column.

A functional dependency (over U), an FD, is a statement,X ! Y whereX; Y � U . A relation R

over U obeys the FDX ! Y if whenever t

1

; t

2

are tuples of R with t

1

[X] = t

2

[X], then t

1

[Y] = t

2

[Y].

We also say then that FD holds for R. If the FD does not hold for R, then we say that R violates

the FD.

A Boolean Dependency, BD, is an arbitrary Boolean combination of attributes. The semantics

are de�ned on the same lines as in functional dependencies. For example the dependency A !

B _ :C means that if for two tuples t

1

and t

2

we have t

1

[A] = t

2

[A] then either t

1

[B] = t

2

[B] or

t

1

[C] 6= t

2

[C].

While Boolean dependencies as such are not very often used in database design, the following

extension of them is quite useful. Associate with each attribute A 2 U an equivalence relation E

A

on the domain (set of possible values) of A. De�ne that A! B_:C holds if and only if for any two

tuples t

1

and t

2

we have (t

1

[A]; t

2

[A]) 2 E

A

then either (t

1

[B]; t

2

[B]) 2 E

B

or (t

1

[C]; t

2

[C]) 62 E

C

.

Using this generalization, we can, e.g., express the following statement about insurance policy

holders. Assume that we have attributes Age, Premium, and Sex, and that we de�ne equivalence

relations for age groups and premium groups. Then we can state the constraint "if two policy

holders belong to the same age group, then their premiums are in the same class or they are of

di�erent sexes".

In the sequel we consider only Boolean dependencies; the extension to the above class is straight-

forward.

If � is a set of dependencies and � a single dependency, we say that � logically implies �, and

denote � j= � if whenever every dependency in � holds for a relation R, then also � holds for R.

If � 6j= �, then there is a relation R

�

(a witness) such that R

�

obeys � but not �.

Mapping a Boolean dependency into a Boolean function is straightforward; simply map every

attribute to a Boolean variable with the same name. Formally, we assume that the set of attributes

U is of size n, and correspondingly discuss the Boolean cube f0; 1g

n

. We map the attributes in

U to the set of n Boolean variables fx

1

; : : :x

n

g which, for convenience, we denote also by U . For

example, the FD �, X ! Y , corresponds to the Boolean formula f

�

,

V

x

i

2X

x

i

!

V

x

j

2Y

x

j

.

7

The following notation is useful when discussing relations. Let t

1

; t

2

be a set of tuples, and let

X � U be a set of attributes. We say that t

1

and t

2

agree exactly on X if t

1

[X] = t

2

[X], and if

t

1

[A] 6= t

2

[A] for each attribute A 62 X . For a relation R we de�ne

agr(R) = fX � U j there is a pair of distinct tuples in R that agree exactly on X g:

Given a relation R we associate with it a set of assignments in f0; 1g

n

as follows: with every

set of attributes X = fx

i

1

; : : : ; x

i

j

g 2 agr(R) we associate an element z

X

2 f0; 1g

n

as follows: z

X

i

,

the i-th bit of z

X

is 1 if and only if the i-th attribute x

i

, is in X . We denote the set of assignments

in f0; 1g

n

that corresponds to the agree set of the relation R by R

agr

.

Claim 3.1 The relation R obeys the Boolean dependency � if and only if for all z 2 R

agr

, f

�

(z) = 1.

Proof: Let R be a relation that obeys � and let t

1

; t

2

be two tuples in R. Then, by de�nition,

z

agrft

1

;t

2

g

2 f0; 1g

n

satis�es f

�

.

For the other direction, assume that R does not obey �. Then, there are two tuples t

1

; t

2

in

R such that the set of attributes Z = agr(t

1

; t

2

) provides a counterexample for �. Therefore, by

de�nition, z

agrft

1

;t

2

g

2 f0; 1g

n

does not satisfy f

�

.

The following theorem shows that, with a small caveat, the semantics of dependencies is equiv-

alent to that of the Boolean formulas. The theorem was �rst reported in [SDPF81] and a small

caveat reported in [BB88] implies that it holds only under some restrictions. We discuss this issue

brie
y.

The de�nition of when a relation R obeys the FD X ! Y does not specify whether the tuples

t

1

and t

2

have to be distinct or not. It turns out that neither choice yields an interpretation which

is semantically equivalent to Boolean formulas implication. The source of the problem is that if

the tuples are not distinct, then the assignment 1

n

is always in R

agr

, and otherwise it is never

in R

agr

. There are several possible solutions for this problem. In order to be consistent with the

standard de�nition for the semantics given in �rst order logic we choose to restrict our discussion to

Boolean dependencies �, such that f

�

(1

n

) = 1. This avoids the problem altogether. (Our results

however do not depend on this choice and hold for the other solutions too.) Therefore, in the

following whenever we refer to Boolean dependencies we mean Boolean dependencies which satisfy

the assignment 1

n

.

Theorem 3.2 ([SDPF81, BB88]) Let � be a set of Boolean dependencies, and � a Boolean

dependency. Let f

�

and f

�

be the corresponding Boolean functions. Then � j= � if and only if

f

�

j= f

�

.

3.2 Armstrong Relations

Next we introduce the notion of Armstrong relations that will turn out to be analogous to the

notion of characteristic model in the Boolean case. An Armstrong relation appeals to our notion of

reasoning with examples. To test whether a dependency follows from our knowledge we would test

whether it holds in the Armstrong relation and decide accordingly. Unlike the Boolean case where

the existence of a set of models with this property is trivial, for database dependencies there in

no a priori guarantee that there exists a �nite set of relations such that checking only those yields

correct results.

Recall that if � 6j= �, then there is a relation R

�

(a witness) such that R

�

obeys � but not �.

Let F be some class of dependencies, and � a set of dependencies in F .

8

De�nition 3.1 An Armstrong relation for � (with respect to F) is a relation R which obeys �

and such that for every � 2 F for which � 6j= �, R does not obey �.

That is, an Armstrong relation for � (with respect to F) is a global witness, a relation that

simultaneously serves the role of witness R

�

for every � 2 F which is not a consequence of �. If

every set of dependencies � in F has an Armstrong relation then we say that F enjoys Armstrong

relations. So, Armstrong relations is a property of a class of dependencies rather than a single

dependency.

In the following we discuss the existence of Armstrong relations, generalizing a result on Arm-

strong relations for FDs proved in [BDFS84].

De�nition 3.2 A Boolean function f is clipped if it can be written as f = g

1

^ g

2

, where g

1

is a

(possibly empty) conjunction of positive literals and g

2

does not depend on any of the variables that

appears in g

1

, and is satis�ed by the assignment 0

n

.

De�nition 3.3 Let M � f0; 1g

n

be a set of assignments. We say that M is clipped if either (1)

0

n

2M or (2) there is a set of attributes C = fx

i

1

; x

i

2

; : : : ; x

i

m

g such that (2.1) for all x 2M and

for all x

i

2 C, x

i

is assigned 1 in x, and (2.2) the assignment in which all the literals in C are set

to 1 and all other literals are set to 0 is in M .

It is easy to observe that a function is clipped if and only if its set of models is clipped, and

that any set of FDs is clipped. The following claim gives a di�erent characterization of this class.

Claim 3.3 A Boolean function f is clipped if and only if it has a unique minimal model (i.e. its

set of models has a minimum).

Proof: Suppose that f is clipped. If 0

n

2 f then it is the unique minimal model. Otherwise, let

C be the set of literals from the de�nition. Then, the assignment in which all the literals in C are

set to 1 and all other literals are set to 0 is the unique minimal model.

For the other direction, suppose that f has a unique minimal model x. Let C be the set of

variables which are set to 1 in x. Then, any model of f must have all the variables in C mapped

to 1, or otherwise x will not be a minimum. Further, the assignment in which all the literals in C

are set to 1 and all other literals are set to 0, is exactly x. So the set of models of f is clipped and

f is clipped.

We now show how, given a clipped set of assignments M , we can build a relation R(M) such

that R(M)

agr

= M . Namely, the agree set of R(M) corresponds exactly to the set M . This is

essentially the \disjoint union" construction used in [Fag82b, BDFS84].

Claim 3.4 For any clipped set of assignments M � f0; 1g

n

there is a relation R(M) such that the

number of tuples in R(M) is 2jM j and R(M)

agr

=M:

Proof: First consider the case in which 0

n

2 M . Order the assignments in M arbitrarily, and

for each assignment in M construct a pair of \sibling" tuples in R(M) as follows: for the i'th

assignment construct one tuple with all attributes mapped to the value 2i, and a second tuple in

which the bits assigned 1 in the assignment are mapped to 2i and the bits assigned 0 are mapped

to 2i+ 1. For example if i = 4 and the i

0

th assignment is (010) then the tuples added to R(M) are

(8 8 8) and (9 8 9). Since tuples generated form di�erent assignment do not agree on any attribute,

9

and the agree set of two sibling tuples corresponds exactly to the 1 bits in the assignment that

generated them we have that R(M)

agr

=M .

If 0

n

62 M we are guaranteed that there is a set of attributes C such that all the variables in

C are assigned 1 in all the assignments in M . We construct a relation with all of the attributes

in C set to the same value, say 0, and for the other attributes we use the same construction as

before. Clearly, the agree set of two sibling tuples corresponds to the assignment that generated

them. Further, the agree set of two non-sibling tuples is exactly C, but this corresponds to the

assignment with all attributes in C mapped to 1 and all other attributes mapped to 0, which is in

M .

Claim 3.5 The class of clipped Boolean Dependencies enjoys Armstrong relations.

Proof: Let � be a set of BDs, and f

�

its Boolean counterpart. We �rst observe that reasoning

with models with the set of all models of f

�

is correct for all Boolean queries. Let M denote this

set of models, and let R(M) be the relation guaranteed by Claim 3.4. Namely, R(M)

agr

= M .

Claim 3.1 implies that R(M) is an Armstrong relation of �.

This is a generalization of the result on Armstrong relations for FDs [BDFS84]. As observed in

the above proof, in the Boolean domain, every function has \Armstrong sets": the set of all models

of f is an \Armstrong set". In the use of example-based reasoning for database dependencies,

however, we want to use a single relation as the example. It is not always possible to capture

all the assignments in this set and no other assignment, using the agree set of a single relation

2

.

Therefore we need the restriction to clipped functions. We give an example for this phenomena in

the appendix.

4 Armstrong Relations As Characteristic Models

For the Boolean domain, the possibility of using example-based reasoning is clear from the outset:

to reason about a function f by using examples one can alway use the set of all models of f . The

problem there is whether there exists a small set of models of f that support correct deduction.

As discussed above, the situation is di�erent for database dependencies. Dependencies are

statements about arbitrary relations (even possibly in�nite ones), and hence there in no a priori

guarantee that there exists a �nite set of relations such that checking only those yields correct

results. We have discussed the existence issue earlier. We now show how results from the theory of

reasoning with models, introduced in Section 2, can be used in the study of Armstrong relations.

The concept of generators, de�ned below, has been introduced by Beeri et. al. [BDFS84] for the

purpose of studying Armstrong relations for functional dependencies. Let � be a set of FDs, over

the set U of attributes. A subset V � U is closed if for every dependency X ! Y , in �, for which

X � V , also Y � V . It is easy to see that the intersection of closed sets is closed, and that the

minimal closed set containing X is X

�

, the set of all attributes A such that � j= X ! A. We denote

by CL(�) the family of closed sets de�ned by �, and by GEN(�) the intersection generators of

CL(�). If M is a family of subsets of a �nite set, closed under intersection, the smallest set M

0

such that M = fS

1

\ : : : \ S

k

j S

i

2 M

0

g is the set of intersection generators of M . It is easy

to show that M

0

is uniquely de�ned. Similar de�nitions in the Boolean domain have been given

2

We could however talk on a set of relations which serve as an Armstrong set instead of a single relation. It is

easy to observe that such sets always exist, using the two tuple relations separately in the set, instead of collating

them all into one relation. We would not pursue this further here.

10

by [KKS93]. Let gen(�) denote the Boolean counterpart of GEN(�). That is, for every subset

Z in GEN(�) construct the assignment z

X

as in the construction of the set R

agr

. The following

theorem shows that this notion coincides with the notion of characteristic models (De�nition 2.3).

Theorem 4.1 ([KR94b]) Let � be a set of FDs and f

�

it Boolean counterpart. Then, �

B

H

f

�

=

gen(�).

The following theorem gives another alternative de�nition for the set GEN(�). Denote by

MAX(�) the collection of all attribute sets X such that there exists an attribute A 2 R such that

� 6j= X ! A, but for any superset Y of X , � j= Y ! A.

Theorem 4.2 ([MR86]) Let � be a set of FDs. Then MAX(�) = GEN(�).

It is well known [Fag82b, BDFS84] that functional dependencies enjoy Armstrong relations.

Beeri et al. [BDFS84] have also shown the correspondence between generators and Armstrong

relations for functional dependencies.

Theorem 4.3 ([BDFS84]) Let � be a set of FDs, then a relation R is an Armstrong relation

(with respect to FDs) for � if and only if GEN(�) � agr(R) � CL(�).

In the following theorems we use the theory for reasoning with models to show that this property

holds in more general cases:

Theorem 4.4 Let F be a set of Boolean functions, B a basis for F , � be a set of dependencies in

the class corresponding to F and M(�) the set of all models of f

�

. Then

(1) If �

B

f

�

� R

agr

�M(�) then R is an Armstrong relation for � with respect to F .

(2) If R is an Armstrong relation for � with respect to F then R

agr

�M(�).

Proof: Part (1) follows from Theorem 2.6, noting that adding models of f

�

to the set � cannot

harm the correctness of the reasoning. Part (2) follows from the observation that if R

agr

has an

assignment not in M(�) then this assignment (by de�nition) falsi�es f

�

, which is a dependency in

the class F .

Theorem 4.5 Let B be a set of assignments, and let F be the set of all Boolean functions that can

be represented using B. Let � be a set of dependencies in the class corresponding to F , and M(�)

the set of all models of f

�

. If R is an Armstrong relation for � with respect to F then �

B

f

�

� R

agr

.

Proof: Suppose that there exists an Armstrong relation R such that �

B

f

�

6� R

agr

, and consider

x 2 �

B

f

�

n R

agr

. We show that there is a function h 2 F , not implied by f

�

, which holds in R,

therefore yielding a contradiction.

De�ne the function g = R

agr

(that is, the elements of R

agr

are all the satisfying assignments of

g), and consider h = g

B

lub

. Then, by de�nition

3

, h 2 F , and g � h, which means that R obeys h.

However, since x 2 �

B

f

�

, x is a minimal model with respect to some b 2 B. Therefore, with respect

to this element b, we get that for all z 2 �

B

f

�

, x 6�

b

z. This implies that h(x) = 0 and therefore h is

not implied by f

�

.

3

Note that we have to show that h is a legal Boolean dependency. That is, by our previous choice, that it satis�es

1

n

. This is guaranteed by the fact that 1

n

2 R

agr

, and that R

agr

� h.

11

Note the di�erence in the premises of the previous two theorems. Theorem 4.5 shows that every

element of the � constructed is necessary in order to get correct deduction. What the proof shows

is that there exists a function h in the class represented by B which necessitates the use of each

element x. Note that, in general, if B is a basis for F it does not mean that all functions in the

class represented by B are in the class F , and therefore the premises of Theorem 4.4 are not enough

to yield this result. We note however that the bases B

H

and B

H

k

presented above, for the classes

of Horn functions and k-quasi-Horn functions respectively, represent those classes exactly. That is,

a function is k-quasi-Horn if and only if it can be represented using B

H

k

.

5 Bounded Disjunctive Dependencies

We now derive some corollaries of the equivalence between Armstrong relations and characteristic

models. Claim 3.5 shows that Armstrong relations exist for the class of clipped functions. We

derive bounds on the size of such relations for special cases of this class.

Let U = fx

1

; : : : ; x

n

g be a set of attributes. A Disjunctive Dependency � is a statement of the

form

x

i

1

^ x

i

2

: : :^ x

i

m

! x

j

1

_ x

j

2

: : :_ x

j

l

:

The semantics of disjunctive dependencies is the same as in Boolean Dependencies. It is easy to

see that any Boolean Dependency can be transformed into a set of Disjunctive Dependencies (this

is simply the conjunctive normal form CNF for Boolean functions).

De�nition 5.1 A (k; q)-Bounded Disjunctive Dependency ((k; q)-BDD) is a statement of the form

x

i

1

^ x

i

2

: : :^ x

i

m

! x

j

1

_ x

j

2

: : :_ x

j

l

;

where m � 1 and one of the following must hold: (1) l � k, or (2) m � k, or (3) m+ l � q.

Case (1) in the de�nition above corresponds to k-quasi-Horn functions, Case (2) in the de�nition

above corresponds to Reversed k-quasi-Horn functions, and case (3) to q-CNF. We would refer to

these sub cases as type (i) BDDs for i 2 f1; 2; 3g respectively. Note that BDDs are de�ned so

that they are clipped and therefore this class enjoys Armstrong relations. In the appendix we give

an example which shows that if we lift the restriction m � 1 then 3-quasi-Horn functions do not

enjoy Armstrong relations, and therefore implies that the restriction is necessary. We can now

derive bounds on the size of minimal Armstrong relations. The next two theorems follow from the

combination of Theorem 4.4, Claim 3.4, Lemma 2.8 and the bound on the sizes of the basis for the

corresponding classes.

Theorem 5.1 Let � be a set of (k; q)-BDDs. If q = O(logn) then the size of the minimal Arm-

strong relation of �, with respect to (k; q)-BDDs, is O(p

1

(n)�jDNF (f

�

)j), where p

1

(n) = O(n

3

+n

k

).

Sagiv et. al. [SDPF81] studied the class of Multi-Valued Dependencies (MVDs). They show

that although MVDs cannot be described as BDs there is a set of dependencies they call degen-

erate MVDs which is semantically equivalent to MVDs and which can be described as BDs. The

degenerate MVDs is a statement of the form X ! Y _ Z where X; Y; Z � U . It can be easily seen

that degenerate MVDs are a subset of 2-quasi-Horn functions. This implies the following theorem:

Theorem 5.2 Let � be a set of FDs and degenerate MVDs. Then the size of the minimal Arm-

strong relation of �, with respect to FDs and degenerate MVDs, is O(p

1

(n) � jDNF (f

�

)j), where

p

1

(n) = O(n

2

).

12

While, FDs are not BDDs if we allow for empty antecedent (the set X in the dependency

X ! Y), we can still get the following bound:

Theorem 5.3 Let � be a set of FDs. Then the size of the minimal Armstrong relation of �, with

respect to FDs, is O(p

1

(n) � jDNF (f

�

)j), where p

1

(n) = O(n).

Proof: The claim follows from the combination of Theorem 4.3, Theorem 4.1, Claim 3.4, Lemma 2.8

and the bound on the size of B

H

.

Note that, if we add FDs (with empty antecedent), to BDDs, then a set of dependencies is not

necessarily clipped. For example � = fx

1

; (x

1

! (x

2

_ x

3

))g is not clipped. We can, however, get

a bound on the size of Armstrong relations for the union of these classes. This follows from the

same arguments as in Theorem 5.1, noting that the basis for k-quasi-Horn functions is also a basis

for Horn functions.

Theorem 5.4 Let � be either a set of (k; q)-BDDs or a set of FDs, where q = O(logn). Then

the size of the minimal Armstrong relation of �, with respect to queries which are either FDs or

(k; q)-BDDs, is O(p

1

(n) � jDNF (f

�

)j), where p

1

(n) = O(n

3

+ n

k

).

For the case where Theorem 4.5 holds we can also get a lower bound. As mentioned before

the basis B

H

k

corresponds exactly to the class of k-quasi-Horn functions. However, the restriction

m � 1 in the de�nition of type (1) BDDs violates this exact correspondence. Let UBDD denote the

class of type (1) and type (2) BDDs with the restriction m � 1 removed. As mentioned above, this

class does not enjoy Armstrong relation. It may still happen, though, that some set of dependencies

in the class has an Armstrong relation with respect to this class (in particular all type (1) BDDs

do). In such cases the following lower bound holds.

Theorem 5.5 Let � be a set of UBDDs. Then the size of the minimal Armstrong relation of �,

with respect to UBDDs, is
(

q

j�

B

f

�

j) where B is the basis for k-quasi-Horn functions and Reversed

k-quasi-Horn functions.

Proof: The proof follows from the observation [BDFS84] that the agree set of a relation with m

tuples has at most

�

m

2

�

elements, together with Theorem 4.5 and Claim 3.1.

6 Translating between Relations and Dependencies

In this section we use the equivalence between Armstrong relations and characteristic models to

discuss the issue of translating between di�erent representations of relational database, namely

representation via dependencies and via relations. This issue is important, in particular, in the

context of designing relational databases.

It has been suggested [MR86] that the design of databases can be bene�ted from translations

between relations and dependencies. The Designer, in this scheme, tries to specify some knowledge

which is not available explicitly, with the help of a computerized design tool.

The process start by the designer suggesting a set of dependencies. In return, the design tool

computes an Armstrong relation for these dependencies, and presents it to the designer. The

designer inspects the relation, and if it is found unsatisfactory, presents an alternative relation

which captures the intuition better. In return, the design tool computes a set of dependencies for

13

this relation, and presents it to the designer. This process goes on for several stages, where the

designer modi�es the representations whenever it is found unsatisfactory.

The task of the design tool is therefore to translate from relations to dependencies and vice

versa. Unfortunately, no polynomial time algorithm for these tasks have been found, even for

the restricted case of functional dependencies. In fact, the complexity of the problem has been

studied [MR86, EG94, FK94, Kha95] but is still an open problem. In general, these problems are

at least as hard as the hypergraph transversal problem. In [EG94, Kha95] it is shown that certain

special cases are equivalent to the latter, and therefore using the algorithm in [FK94] these can be

solved in sub-exponential time n

O(logn)

. Furthermore, an immediate corollary from the equivalence

shown here, and recent results on characteristic models [Kha95], is that the complexity of the two

translation problems is equivalent under polynomial reductions.

While we do not solve the problems here we do show how some alternative translations can be

performed. First, for translation from a relation to a set of dependencies, we show that an alter-

native closed form can be given for the set of dependencies. While not in traditional dependencies

form, it does convey some structure and can still be presented to a designer for inspection.

Secondly, for translating a set of dependencies to a relation we show how an \approximate"

relation can be computed, which disagrees with the dependencies on at most a small fraction of

possible tuples.

6.1 A Closed Form from Armstrong relations.

Given a set of characteristic models � and a basis B we can give a closed form for the function that

these describe. In particular we have

f = ^

b

B

_

z2�

M

b

(z):

We �rst observe that the functionM

b

(z) for an assignment z is a conjunction of literals. Simply

take t

z;b

= ^

z

i

6=b

i

x

z

i

i

, where x

0

i

= x

i

and x

1

i

= x

i

. This implies that the closed form we get is a

depth 3 circuit: a conjunction of disjunction of conjunctions,

f = ^

b

B

_

z2�

t

z;b

:

In Boolean terms, this allows for the evaluation of the function f given its set of characteristic

models. As discussed above, in the context of designing a relational database, this is a conjunction

of disjunctive restrictions which may be useful for a human inspector.

6.2 Armstrong relations from Dependencies

We now consider the relation inference problem. Namely, given a set of dependencies � as input the

problem is to compute an Armstrong relation R for this set of dependencies. While the complexity

of this problem is an open question, we present an algorithm which \approximately" solves this

problem. The output of the algorithm is a relation R which, relative to the uniform probability

measure D on f0; 1g

n

, disagrees with � on a small fraction of the distribution. The complexity of

the algorithm depends on the DNF size of the input.

Approximate inference solutions for the problem of dependency inference have been studied

before [KM94], where the output was a set of dependencies which approximated the input relation

in a similar sense. Using the monotone theory we apply the same technique to the problem of

relation inference. Approximating a relation in such a way is useful when answering queries. In

[KR94a] it has been shown that it is su�cient to answer a large set of queries correctly.

14

The results presented here draw on previous results in computational learning theory. In this

framework a function f : f0; 1g

n

! f0; 1g is hidden from a learner that has to reproduce it

by accessing certain \oracles". A membership query allows the learner to �nd the value of the

function on a certain point.

De�nition 6.1 A membership query oracle for a function f : f0; 1g

n

! f0; 1g, denoted MQ(f),

is an oracle that when presented with x 2 f0; 1g returns f(x).

An equivalence query allows the learner to �nd out whether the current hypothesis is equivalent

to f or not. In case it is not equivalent the learner is supplied with a counterexample.

De�nition 6.2 An equivalence query oracle for a function f : f0; 1g

n

! f0; 1g, denoted EQ(f),

is an oracle that when presented with a hypothesis h : f0; 1g

n

! f0; 1g, returns Yes if f � h.

Otherwise it returns No and a counterexample x such that f(x) 6= h(x).

We use a result that has been obtained in this framework. The result is due to Bshouty [Bsh93]

and its relation to characteristic models has been pointed out in [KR94a].

Theorem 6.1 Let f be a Boolean function and let B be a monotone basis for f . There is an

algorithm A that, on input B, when given access to MQ(f) and EQ(f), runs in time polynomial

in the number of variables and in the DNF size of f , and outputs the set � = �

B

f

.

The hypothesis h the algorithm uses when accessing EQ(f) is always in the form h = ^

b2B

_

z2G

M

b

(z), where G is a set of assignments such that G � f .

Theorem 6.2 Let � be a set of Functional Dependencies and B = B

H

a monotone basis for �.

There is a randomized algorithm APPROX that on input 0 < �; � < 1;�; B computes a relation R

such that the function f

R

= ^

b2B

_

z2R

agr

M

b

(z) satis�es

(1) f

R

j= f

�

and

(2) with probability > 1� �, Prob

D

[f

�

n f

R

] < �, where D is the uniform distribution over f0; 1g

n

,

and

the algorithm is polynomial in n; 1=�; 1=� and the DNF size of �.

Proof: The algorithm APPROX will run the algorithm A from Theorem 6.1 and answer theMQ

and EQ queries that A presents.

Given x 2 f0; 1g

n

for MQ the algorithm tests whether x satis�es f

�

and answers yes or no

accordingly.

Given a a set of assignments G for EQ we have to test whether f

�

is equivalent to h =

^

b2B

_

z2G

M

b

(z). The algorithm APPROX will draw m = (1=�) log(1=�) assignments in f0; 1g

n

according to D and will evaluate f

�

and h on these assignments. If an assignment x such that

h 6= f

�

is found then x is returned as a counterexample. Otherwise APPROX says that the

functions are equivalent, and stops the simulation of A.

APPROX then �nds the unique minimal assignment of f

�

, and adds it to G. This is possible

since f

�

is in Horn form. Then it outputs the relation R(G) such that R(G)

agr

= G, guaranteed

by Claim 3.4.

To prove (1) note that since Theorem 6.1 guarantees that the assignments in G satisfy f

�

,

Corollary 2.4 implies that f

R

= h j= f

�

.

To prove (2) note that when the algorithm stops only it could not �nd a counterexample in a

random sample of size m. Suppose that Prob[h 6= f] > � then the probability that m independent

samples did not �nd a counterexample is at most (1� �)

m

< �.

Finally, note that algorithm A is guaranteed to run in time polynomial in n and the DNF size

of f

�

, and the samples we take are polynomial in 1=�; 1=�.

15

Note that the proof depends on the restriction to Functional Dependencies only for the task of

�nding the minimum assignment, which makes G clipped. It can therefore be generalized to any

class in which this is possible, and in particular to BDDs where all dependencies satisfy 0

n

.

7 Abductive Explanations as Keys

In this section we show another connection between notions in database theory and the propositional

domain. In particular we show a close relation between abductive explanations in the propositional

domain and keys in relational databases.

Abduction is the task of �nding a minimal explanation to some observation. Formally (see,

e.g., [RDK87]), the reasoner is given a Boolean function KB (the background theory), a set of

propositional letters A (the assumption set), and a query letter q. An assumption based explanation

of q, with respect to the background theory KB, is a minimal subset E � A such that

1. KB^(^

x2E

x) j= q and

2. KB^(^

x2E

x) 6= ;.

Thus, abduction involves tests for entailment and consistency, but also a search for an explanation

that passes both tests.

When the set A of assumptions includes all the propositional letters, the set E is simply called

an explanation. In this case the task of computing an explanation is, on input KB,q, to compute

an explanation E for q with respect to KB.

Given a set � of functional dependencies over a set U of attributes, a key for U , with respect

to a set � of Boolean dependencies, is a set X � U such that � j= X ! U , but no proper subset

of X has this property. That is, a key is a minimal set of attributes that functionally determines

all attributes. The task of computing a key is, on input �, to compute a key X for U with respect

to �.

Let S be a class of Boolean dependencies, which includes all the dependencies of the form

x

i

! x

j

. For example S can be the class of functional dependencies, or the class of (k; q)-BDDs.

Let F

S

be the class of Boolean functions which corresponds to S.

Theorem 7.1 The problem of computing an abductive explanation with respect to functions in F

S

is computationally equivalent (under polynomial reductions) to the problem of computing a key with

respect to dependencies in S.

Proof: Assume �rst that � 2 S is a set of Boolean dependencies over a set of attributes U . Given

an algorithm that computes an abductive explanation e�ciently, we can use it to compute a key

for U . Let f

�

be the corresponding Boolean function over the variables fx

1

; : : :x

n

g, and q be an

additional propositional letter. Denote by KB the background theory consisting of the function

KB = f

�

^ ((

^

x

i

2U

x

i

)! q):

Then X is a key for U with respect to � if and only if (

V

x

i

2X

x

i

) is an explanation for q with

respect to KB.

For the other direction, we are given a Boolean function f 2 F

S

over fx

1

; : : :x

n

g, and assume

we are looking for an explanation for x

j

. Consider the function g = f

V

^

i 6=j

(x

j

! x

i

), and its

corresponding set of Boolean dependencies �

g

. Then (

V

x

i

2X

x

i

) is an explanation for x

j

with

respect to f if and only if X is a key for U with respect to �

g

.

16

As one can expect from the above equivalence, similar results have been derived in the two

domains. For the case where � is a Horn theory, Theorem 1 of [SL90] gives an O(kjj�jj) algorithm

for producing an explanation, where k is the number of propositional variables and jj�jj is the

number of occurrences of symbols in �. This corresponds to a result of [Kun85], showing how to

compute keys with respect to set of dependencies consisting only of de�nite Horn clauses. Using

his result and the equivalence theorem above, we can �nd explanations in time O(Kjj�jj), where

K is the number of variables in the resulting explanation.

Furthermore, Theorem 2 of [SL90] shows that it is NP-complete to determine whether a propo-

sitional letter occurs in an explanation. This corresponds to the late 1970's result of [LO78]: it is

NP-hard to determine whether an attribute is prime, i.e., occurs in a key.

The task of computing an assumption based explanation is NP-Hard when the input is given as

a propositional expression [SL90]. However, if the input is given as a set of characteristic models

then this task has a polynomial time algorithm [KKS93, KR94b]. Using the above equivalence,

this algorithm can be applied to �nd keys, restricted to certain subset of the attributes, when the

input is an Armstrong relation.

8 Conclusions

We have revealed a useful connection between theories for relational databases and theories for

automated reasoning. The notion of Armstrong relation for relational databases has been shown to

be equivalent to the notion of characteristic models in the theory for automated reasoning. Some

corollaries of this correspondence have been developed.

Using the results from the automated reasoning domain we derived bounds for the size of

Armstrong relations for functional dependencies. We then presented a new family of Bounded Dis-

junctive Dependencies, which generalizes the class of FDs. This family enjoys Armstrong relations,

and similar size bounds have been derived for it.

We then discussed the issue of the translation between the relations and dependencies repre-

sentations of relational databases. We have shown that a closed form, which conveys the exact

information in the relation, can be easily computed for any relation. Further, given a set of

dependencies, we can compute a relation which approximately captures the information in the

dependencies.

Lastly, we have shown that there is a close relation between keys and abductive explanations

in these domains, and that similar results have been found independently in the two �elds.

We believe that studying the correspondence between the �elds can be fruitful to both.

A Disjunctive Dependencies do not enjoy Armstrong Relations

We give an example which shows that if we allow for empty antecedents in BDDs then the class

does not enjoy Armstrong relations, even for k = 3.

Let � = (x

1

_ x

2

) ^ (x

1

_ x

3

) = x

1

_ x

2

x

3

. In the following when we discuss assignments in the

agree set we mean the assignment z

X

which corresponds to the set X in the agree set. We have

the following observations on the agree set of any Armstrong relation for �.

� � j= (x

1

_ x

2

_ x

3

), and therefore the agree set of R must not include the assignment (0 0 0).

� � j= (x

1

_ x

3

), and therefore the agree set of R must not include the assignment (0 1 0).

� � 6j= (x

2

x

3

! x

1

), and therefore the agree set of R must include the assignment (0 1 1).

17

� � 6j= (x

2

_ x

3

), and therefore the agree set of R must include the assignment (1 0 0).

We now show that there does not exist a relation for which the agree set includes both (0 1 1)

and (1 0 0) but neither of (0 0 0) and (0 1 0).

Let t

1

= (a b c) and t

2

= (a

0

b c) be two tuples which contribute the assignment (0 1 1) to

the agree set. Note that if agr(t

1

; t

3

) corresponds to the assignment (1 0 0) for some third tuple

t

3

, then agr(t

2

; t

3

) corresponds to (0 0 0) which is not possible, and similarly for t

2

. So we must

use two new tuples t

3

= (d e f) and t

4

= (d e

0

f

0

) in order to create (1 0 0). Note that since the

assignment (0 0 0) is not allowed in the agree set, the tuples t

3

and t

4

must agree with t

1

and t

2

on something.

Consider �rst the case where d = a. If e 6= b and f 6= c then agr(t

3

; t

2

) corresponds to (0 0 0)

so this is not possible. If e = b and f = c then agr(t

4

; t

1

) corresponds to (0 0 0) and this is not

possible too. If e = b and f 6= c then agr(t

3

; t

2

) corresponds to (0 1 0) and this is not possible too.

This implies that d 6= a and by symmetry we also get d 6= a

0

.

Consider now the case in which d 6= a and d 6= a

0

. If e 6= b and f 6= c then agr(t

3

; t

1

) corresponds

to (0 0 0) so this is not possible. If e = b and f = c then agr(t

4

; t

1

) corresponds to (0 0 0) and

this is not possible too. If e = b and f 6= c then agr(t

3

; t

1

) corresponds to (0 1 0) and this is not

possible too. So there is no way in which we can construct an Armstrong relation for �.

Note that although the analysis is done for n = 3 is holds for any n by simply extending the

assignments discussed for the required length, since the truth value of the statements involved does

not depend on the values assigned to the other attributes.

References

[ABN

+

92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically good

low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on

information theory, 38(2):509{516, 1992.

[BB88] J. Berman and W.J. Blok. Positive boolean dependencies. Information Processing

Letters, 27:147{150, 1988.

[BDFS84] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the structure of Armstorng relations

for functional dependencies. Journal of the ACM, 31(1):30{46, 1984.

[Bsh93] N. H. Bshouty. Exact learning via the monotone theory. In IEEE Symp. of Foundation

of Computer Science, pages 302{311, Palo Alto, CA., 1993.

[EG94] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and

related problems. SIAM Journal of Computing, 1994. To appear.

[Fag82a] R. Fagin. Horn clauses and database dependencies. Journal of the ACM, 29(4):952{985,

1982.

[Fag82b] Ronald Fagin. Armstrong databases. Research Report RJ3440, IBM, San Jose, CA,

May 1982.

[FK94] M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunc-

tive normal forms. Technical Report LCS-TR-225, Department of Computer Science,

Rutgers University, May 1994.

18

[Hon86] J. Hong. Proving by example and gap theorems. In Proc. 27th IEEE Symposium on

Foundations of Computer Science (FOCS), pages 107{116, 1986.

[JL83] P. N. Johnson-Laird. Mental Models. Harvard University Press, 1983.

[Kha95] R. Khardon. Translating between Horn expressions and their characteristic models.

Technical Report TR-03-95, Aiken Computation Lab., Harvard University, February

1995.

[KKS93] H. Kautz, M. Kearns, and B. Selman. Reasoning with characteristic models. In Pro-

ceedings of the National Conference on Arti�cial Intelligence, pages 34{39, 1993.

[KM94] J. Kivinen and H. Mannila. Approximate inference of functional dependencies from

relations. Theoretical Computer Science, 1994. To Appear. A preliminary version of the

paper appeared in ICDT 1992.

[KR94a] R. Khardon and D. Roth. Learning to reason. In Proceedings of the National Conference

on Arti�cial Intelligence, pages 682{687, 1994. Full version: Technical Report TR-02-94,

Aiken Computation Lab., Harvard University, January 1994.

[KR94b] R. Khardon and D. Roth. Reasoning with models. In Proceedings of the National

Conference on Arti�cial Intelligence, pages 1148{1153, 1994. Full version: Technical

Report TR-1-94, Aiken Computation Lab., Harvard University, January 1994.

[Kun85] Sukhamay Kundu. An improved algorithm for �nding a key of a relation. In Proceedings

of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems

(PODS'85), pages 189{192, New York, NY, 1985. ACM.

[LO78] C. L. Lucchesi and Sylvia L. Osborn. Candidate keys for relations. Journal of Computer

and System Sciences, 17(2):270{279, 1978.

[MR86] H. Mannila and K. R�aih�a. Design by example: an application of Armstrong relations.

Journal of Computer and System Sciences, 33(2):126{141, 1986.

[RDK87] R. Reiter and J. De Kleer. Foundations of assumption-based truth maintenance systems.

In Proceedings of the National Conference on Arti�cial Intelligence, pages 183{188, 1987.

[SDPF81] Y. Sagiv, C. Delobel, D. S. Parker, and R. Fagin. An equivalence between relational

database dependencies and a fragment of propositional logic. Journal of the ACM,

28(3):435{453, 1981.

[SK91] B. Selman and H. Kautz. Knowledge compilation using Horn approximations. In Pro-

ceedings of the National Conference on Arti�cial Intelligence, pages 904{909, 1991.

[SL90] B. Selman and H. Levesque. Abductive and default reasoning: A computational core. In

Proceedings of the National Conference on Arti�cial Intelligence, pages 343{348, 1990.

19

