Zusammenfassung
Das “Brainstormers” Projekt wurde 1998 gestartet mit dem Ziel, lernfähige autonome Agenten in komplexen Umgebungen am Beispiel Roboterfußball zu erforschen. Dabei hat die Bearbeitung der vielfältigen Fragestellungen, die sich in dieser sehr dynamischen und verrauschten Umgebung ergeben, zu einer Vielzahl neuartiger Methoden und theoretischer Ergebnisse geführt.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bertsekas DP, Tsitsiklis J: Neuro-Dynamic Programming. Athena Scientific, 1996
Gabel T, Riedmiller M: Learning a partial behavior for a competitive robotic soccer agent. KI Zeitschrift, 2006
Hafner R, Riedmiller M: Reinforcement learning on an omnidirectional mobile robot. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, 2003
Hafner R, Riedmiller M: Neural RL controller for speed control of a real robot. Subitted to: Robotics Science and Systems (RSS 2006), 2006
Lauer M, Lange S, Riedmiller M: Calculating the perfect match: an efficient and accurate approach for robot self-localization. In: Robocup 2005, 2005
Lauer M, Lange S, Riedmiller M (2006) Motion estimation of moving objects for autonomous mobile robots. Künstliche Intelligenz 20(1):11–17
Lauer M, Riedmiller M: An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In: Proceedings of International Conference on Machine Learning, ICML ’00, pp 535–542, Stanford, CA, 2000
Lauer M, Riedmiller M: Reinforcement learning for stochastic cooperative multi-agent systems. In: Proceedings of the AAMAS ’04, New York, 2004
Merke A, Riedmiller M: Karlsruhe Brainstormers – a reinforcement learning way to robotic soccer II. In: RoboCup-2001: Robot Soccer World Cup V, LNCS. Springer, 2001
Nardi D, Riedmiller M, Sammut C, Santos-Victor J (eds) RoboCup 2004: Robot Soccer World Cup VIII, vol 3276, 2005. ISBN 3-540-25046-8
Ng A, Harada D, Russell S: Policy invariance under reward transformations: Theory and application to reward shaping. In: Proceedings of the 16th International Conference on Machine Learning (ICML), Slovenia, 1999. Morgan Kaufmann
Noda I, Matsubara H, Hiraki K, Frank I (1998) Soccer Server: A tool for research on multi-agent systems. Appl Artif Intell 12(2–3):233–250
Riedmiller M: Neural fitted Q iteration – first experiences with a data efficient neural reinforcement learning method. In: Machine Learning: ECML 2005, Porto, Portugal, 2005. Springer
Sutton RS, Barto AG: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998
Withopf D, Riedmiller M (2005) Effective methods for reinforcement learning in large multi-agent domains. Inf Technol J 5(47):241–249
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Riedmiller, M., Gabel, T., Hafner, R. et al. Die Brainstormers: Entwurfsprinzipien lernfähiger autonomer Roboter. Informatik Spektrum 29, 175–190 (2006). https://doi.org/10.1007/s00287-006-0077-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00287-006-0077-9