Zusammenfassung
Daten von niedriger Qualität sind in kommerziellen und wissenschaftlichen Datenbanken allgegenwärtig.
References
Batini, C., Scannapieco, M.: Data Quality: Concepts, Methods and Techniques. Heidelberg: Springer Verlag (2006)
Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)
Naumann, F., Freytag, J.-C., Leser, U.: Completeness of integrated information sources. Inf. Syst. 29(7), 583–615 (2004)
Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), http://www.ncbi.nlm.nih.gov/omim/ (2006)
Pierce, E.: Assessing data quality with control matrices. Commun. ACM 47(2), 82–86 (2004)
Pipino, L., Lee, Y., Wang, R.: Data quality assessment. Commun. ACM 4, 211–218 (2002)
Rahm, E., Do, H.-H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)
Redman, T.C.: Data Quality – The Field Guide. Boston: Digital Press (2001)
Saake, G., Sattler, K.-U., Naumann, F. (Eds.) Datenbankspektrum – Daten- und Informationsqualität, volume 14. Heidelberg: dpunkt.verlag (2005)
Shankaranarayanan, G., Wang, R.Y., Ziad, M.: IP-MAP: Representing the manufacture of an information product. In: Proceedings of the International Conference on Information Quality (IQ), pages 1–16 (2000)
Wang, R.Y., Strong, D.M.: Beyond accuracy: What data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–34 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naumann, F. Datenqualität. Informatik Spektrum 30, 27–31 (2007). https://doi.org/10.1007/s00287-006-0125-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00287-006-0125-5