Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Bailey DH, Borwein PB, Plouffe S (1997) On the rapid computation of various poly logarithmic constants. Math Comp 66:903–913
Bailey DH, Crandall RE (2001) On the random character of fundamental constant expansions. Exp Math 10:175–190, A K Peters, http://crd.lbl.gov/∼dhbailey/dhbpapers/baicran.pdf, letzter Zugriff 9.8.2011
Boll D (1991) https://home.comcast.net/∼davejanelle/mandel.html, letzter Zugriff 9.8.2011
Borwein J, Borwein P (1998) Pi and the AGM: a study in analytic number theory and computational complexity. In: Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 4. Wiley
Brent RP (1976) Fast multiple-precision evaluation of elementary functions. J ACM 23(2):242–251
Euler L (1748) Introductio in Analysin Infinitorum, Tomus Primus. Opera Omnia, Lausanne
Fischbach E, Tu S-J (2005) A Study on the Randomness of the Digits of π. Int J Mod Phys C 16(2):281–294
Free Software Foundation (2011) GMP Arithmetic without limitations. The GNU Multiple Precision Arithmetic Library. http://gmplib.org/, letzter Zugriff 9.8.2011
IEEE (2008) 754-2008 IEEE Standard for Floating-Point Arithmetic. http://dx.doi.org/10.1109/IEEESTD.2008.4610935, letzter Zugriff 9.8.2011
Jung F (2011) pi10k. http://www.avoision.com/experiments/pi10k/index.php, letzter Zugriff 9.8.2011
Klebanoff A (2001) π in the Mandelbrot set. https://home.comcast.net/∼davejanelle/mandel.pdf, letzter Zugriff 9.8.2011
Oracle Inc (2011) Class BigInteger. http://download.oracle.com/javase/1.4.2/docs/api/java/math/BigInteger.html, letzter Zugriff 9.8.2011
Peitgen HO, Jürgens H, Saupe D (1993) Chaos and Fractals: New Frontiers of Science. Springer
Plouffe S (2003) On the computation of the nth decimal digit of various transcendental numbers. http://91.121.118.218/simon/Simon/articlepi.html, letzter Zugriff 9.8.2011
Salamin E (1976) Computation of π using arithmetic geometric mean. Math Comp 30(135):565–570
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fechner, B. 3,14159... oder die näherungsweise Berechnung von π. Informatik Spektrum 35, 215–219 (2012). https://doi.org/10.1007/s00287-011-0565-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00287-011-0565-4