Skip to main content

Advertisement

Log in

Bioinformatics advances biology and medicine by turning big data troves into knowledge

  • HAUPTBEITRAG
  • BIOINFORMATICS ADVANCES BIOLOGY AND MEDICINE
  • Published:
Informatik-Spektrum Aims and scope

Abstract

Informatics and life sciences (molecular biology and medicine) are undoubtedly the most rapidly growing and most dynamic endeavors of modern society. Computational biology or bioinformatics describes the rising field that integrates those endeavors. Over the last 50 years, the field has shifted focus from the study of individual genes and proteins (1967–1994), to that of entire organisms (19952015), and more recently to studying the diversity of populations. The increasing amount of big data created by the life sciences is challenging already by its volume alone. Even more challenging is the high intrinsic complexity of the data. In addition, the data are changing at a breathtaking speed; most data generated in 2016 probes conditions that had not been anticipated 15 years ago. Precision medicine and personalized health are just two descriptors of how modern biology will become relevant for improving our health. All new drugs have at some point have bioinformatics tools in their development. Similarly, there would not be any digital medicine without the bioinformatics expertise or any advances without mastering machine learning tools turning raw data into valuable insights and decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold R, Goldenberg F, Mewes HW, Rattei T (2014) SIMAP – the database of all-against-all protein sequence similarities and annotations with new interfaces and increased coverage. Nucl Acids Res 42:D279–D284

    Article  Google Scholar 

  2. Barker WC, George DG, Mewes HW, Pfeiffer F, Tsugita A (1993) The PIR-International databases. Nucl Acids Res 21:3089–3092

    Article  Google Scholar 

  3. Birzele F, Csaba G, Erhard F, Friedel CC, Küffner R, Petri T, Windhager L, Zimmer R (2009) Algorithmische Systembiologie mit Petrinetzen – Von qualitativen zu quantitativen Systemmodellen. Informatik-Spektrum 32:310–319

    Article  Google Scholar 

  4. Blasi T, Hennig H, Summers HD, Theis FJ, Cerveira J, Patterson JO, Davies D, Filby A, Carpenter AE, Rees P (2016) Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Commun 7:10256

    Article  Google Scholar 

  5. Dolken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G, Marcinowski L, Motsch N, Barth S, Beitzinger M, Lieber D, Bailer SM, Hoffmann R, Ruzsics Z, Kremmer E, Pfeffer S, Zimmer R, Koszinowski UH, Grasser F, Meister G, Haas J (2010) Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7:324–334

    Article  Google Scholar 

  6. Ellwanger DC, Leonhardt JF, Mewes HW (2014) Large-scale modeling of condition-specific gene regulatory networks by information integration and inference. Nucl Acids Res 42:e166, doi: 10.1093/nar/gku916

  7. Eser P, Wachutka L, Maier KC, Demel C, Boroni M, Iyer S, Cramer P, Gagneur J (2016) Determinants of RNA metabolism in the Schizosaccharomyces pombe genome. Mol Syst Biol 12:857

    Article  Google Scholar 

  8. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb J-F, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  Google Scholar 

  9. Friedel CC, Dolken L, Ruzsics Z, Koszinowski UH, Zimmer R (2009) Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucl Acids Res 37:e115

    Article  Google Scholar 

  10. Friedel CC, Zimmer R (2007) Influence of degree correlations on network structure and stability in protein-protein interaction networks. BMC Bioinformatics 8:297

    Article  Google Scholar 

  11. Ginzinger SW, Skocibusic M, Heun V (2009) CheckShift improved: fast chemical shift reference correction with high accuracy. J Biomol NMR 44:207–211

    Article  Google Scholar 

  12. Goldberg T, Rost B, Bromberg Y (2016) Computational prediction shines light on type III secretion origins. Scientific reports 6:34516

    Article  Google Scholar 

  13. Hecht M, Bromberg Y, Rost B (2013) News from the protein mutability landscape. J Mol Biol 425:3937–3948

    Article  Google Scholar 

  14. Honigschmid P, Frishman D (2016) Accurate prediction of helix interactions and residue contacts in membrane proteins. J Struct Biol 194:112–123

    Article  Google Scholar 

  15. Jaravine V, Raffegerst S, Schendel DJ, Frishman D (2016) Assessment of cancer and virus antigens for cross-reactivity in human tissues. Bioinformatics 33:107–111

    Google Scholar 

  16. Karabulut NP, Frishman D (2016) Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites. PLoS One 11:e0157896

    Article  Google Scholar 

  17. Kremer L, Bader D, Mertes C, Kopajtich R, Pichler G, Iuso A, Haack T, Graf E, Schwarzmayr T, Terrile C, Konafikova E, Repp B, Kastenmüller G, Adamski J, Lichtner P, Leonhardt C, Funalot B, Donati A, Tiranti V, Lombes A, Jardel C, Gläser D, Taylor R, Ghezzi D, Mayr J, Rötig A, Freisinger P, Distelmaier F, Strom T, Meitinger T, Gagneur J, Prokisch H (2017) Genetic diagnosis of Mendelian disorders via RNA sequencing. bioRxiv

  18. Krumsiek J, Friedel CC, Zimmer R (2008) ProCope – protein complex prediction and evaluation. Bioinformatics 24:2115–2116

    Article  Google Scholar 

  19. Mahlich Y, Hecht M, De Beer TAP, Bromberg Y, Rost B (2016) Common sequence variants affect molecular function more than rare variants? PNAS (submitted)

  20. Mewes HW, Albermann K, Heumann K, Liebl S, Pfeiffer F (1997) MIPS: a database for protein sequences, homology data and yeast genome information. Nucl Acids Res 25:28–30

    Article  Google Scholar 

  21. Montgomery SB, Dermitzakis ET (2011) From expression QTLs to personalized transcriptomics. Nat Rev Genet 12:277–282

    Article  Google Scholar 

  22. Rost B, Radivojac P, Bromberg Y (2016) Protein function in precision medicine: deep understanding with machine learning. FEBS Letters 590:2327–2341

    Article  Google Scholar 

  23. Rost B, Sander C (1992) Jury returns on structure prediction. Nature 360:540

    Article  Google Scholar 

  24. Rost B, Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. PNAS 90:7558–7562

    Article  Google Scholar 

  25. Schneider M, Rosam M, Glaser M, Patronov A, Shah H, Back KC, Daake MA, Buchner J, Antes I (2016) BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP. Proteins 84:1390–1407

    Article  Google Scholar 

  26. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Honigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C, Ben-Tal N, Rost B (2014) PredictProtein – an open resource for online prediction of protein structural and functional features. Nucl Acids Res 42:W337–W343

    Article  Google Scholar 

  27. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  Google Scholar 

  28. Zhang Y, Xu H, Frishman D (2016) Genomic determinants of somatic copy number alterations across human cancers. Hum Mol Genet 25:1019–1030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Rost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagneur, J., Friedel, C., Heun, V. et al. Bioinformatics advances biology and medicine by turning big data troves into knowledge. Informatik Spektrum 40, 153–160 (2017). https://doi.org/10.1007/s00287-017-1032-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-017-1032-7

Navigation