Abstract
We introduce the time-constrained maximal covering routing problem (TCMCRP), as a generalization of the covering salesman problem. In this problem, we are given a central depot, a set of facilities and several customers which are located within a pre-determined coverage distance of available facilities. Each facility can supply the demand of some customers which are within its coverage radius. Starting from the depot, the goal is to maximize the total number of covered customers, by constructing a set of p length constraint Hamiltonian cycles. We have proposed a mixed integer linear programming model and three heuristic algorithms, namely iterated local search (ILS), tabu search (TS) and variable neighborhood search (VNS), to solve the problem. Extensive computational tests on this problem and some of its variants clearly indicate the effectiveness of the developed solution methods.







Similar content being viewed by others
References
Aras N, Aksen D, Tekin MT (2011) Selective multi-depot vehicle routing problem with pricing. Transp Res C Emerg 19(5):866–884. https://doi.org/10.1016/j.trc.2010.08.003
Archetti C, Feillet D, Hertz A, Speranza MG (2010) The undirected capacitated arc routing problem with profits. Comput Oper Res 37(11):1860–1869. https://doi.org/10.1016/j.cor.2009.05.005
Bae H, Moon I (2016) Multi-depot vehicle routing problem with time windows considering delivery and installation vehicles. Appl Math Model 40(13):6536–6549. https://doi.org/10.1016/j.apm.2016.01.059
Baldacci R, Dell’Amico M, González JS (2007) The capacitated m-ring-star problem. Oper Res 55(6):1147–1162. https://doi.org/10.1287/opre.1070.0432
Bock A, Sanità L (2015) The capacitated orienteering problem. Discrete Appl Math 195:31–42. https://doi.org/10.1016/j.dam.2014.10.001
Bouly H, Dang DC, Moukrim A (2010) A memetic algorithm for the team orienteering problem. Q J Oper Res 4 or 8(1):49–70. https://doi.org/10.1007/s10288-008-0094-4
Buhrkal K, Larsen A, Ropke S (2012) The waste collection vehicle routing problem with time windows in a city logistics context. Procedia Soc Behav Sci 39:241–254. https://doi.org/10.1016/j.sbspro.2012.03.105
Butt SE, Cavalier TM (1994) A heuristic for the multiple tour maximum collection problem. Comput Oper Res 21(1):101–111. https://doi.org/10.1016/0305-0548(94)90065-5
Chao IM, Golden B, Wasil E (1996) The team orienteering problem. Eur J Oper Res 88:464–474. https://doi.org/10.1016/0377-2217(94)00289-4
Church R, Velle CR (1974) The maximal covering location problem. Pap Reg Sci. 32:101–1181. https://doi.org/10.1111/j.1435-5597.1974.tb00902.x
Current JR, Schilling DA (1989) The covering salesman problem. Transp Sci 23:208–213. https://doi.org/10.1287/trsc.23.3.208
Current JR, Schilling DA (1994) The median tour and maximal covering tour problems: formulations and heuristics. Eur J Oper Res 73(1):114–126. https://doi.org/10.1016/0377-2217(94)90149-X
Dang DC, Guibadj RN, Moukrim A (2011) A pso-based memetic algorithm for the team orienteering problem. In: European conference on the applications of evolutionary computation. Springer, Berlin, pp 471–480. https://doi.org/10.1007/978-3-642-20520-0_48
Dang DC, Guibadj RN, Moukrim A (2013) An effective PSO-inspired algorithm for the team orienteering problem. Eur J Oper Res 229(2):332–344. https://doi.org/10.1016/j.ejor.2013.02.049
Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80–91. https://doi.org/10.1287/mnsc.6.1.80
Dell’Amico M, Righini G, Salani M (2006) A branch-and-price approach to the vehicle routing problem with simultaneous distribution and collection. Transp Sci 40(2):235–247. https://doi.org/10.1287/trsc.1050.0118
Faulin J, Juan A, Lera F, Grasman S (2011) Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: a case study. Procedia Soc Behav Sci 20:323–334. https://doi.org/10.1016/j.sbspro.2011.08.038
Gendreau M, Laporte G, Semet F (1997) The covering tour problem. Oper Res 45:568–576. https://doi.org/10.1287/opre.45.4.568
Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190–206. https://doi.org/10.1287/ijoc.1.3.190
Golden BL, Raghavan S, Wasil EA (2008) The vehicle routing problem: latest advances and new challenges. Springer, New York
Golden BL, Naji-Azimi Z, Raghavan S, Salari M, Toth P (2012) The generalized covering salesman problem. INFORMS J Comput 24(4):534–553. https://doi.org/10.1287/ijoc.1110.0480
Gunawan A, Lau HC, Lu K (2015) An iterated local search algorithm for solving the orienteering problem with time windows. In: European conference on evolutionary computation in combinatorial optimization. pp 61–73. https://doi.org/10.1007/978-3-319-16468-7_6
Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering problem: a survey of recent variants, solution approaches and applications. Eur J Oper Res 255(2):315–332. https://doi.org/10.1016/j.ejor.2016.04.059
Hiermann G, Puchinger J, Ropke S, Hartl RF (2016) The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Eur J Oper Res 252(3):995–1018. https://doi.org/10.1016/j.ejor.2016.01.038
Hosseinabadi AAR, Rostami NSH, Kardgar M, Mirkamali S, Abraham A (2017) A new efficient approach for solving the capacitated vehicle routing problem using the gravitational emulation local search algorithm. Appl Math Model 49:663–679. https://doi.org/10.1016/j.apm.2017.02.042
https://www.cdc.gov/outbreaks/index.html. Accessed 06 Nov 2018
https://ecdc.europa.eu/en/threats-and-outbreaks. Accessed 07 Oct 2018
http://www.who.int/csr/don/archive/year/2018/en/. Accessed 07 June 2018
Jabali O, Leus R, Van Woensel T, De Kok T (2015) Self-imposed time windows in vehicle routing problems. OR Spect 37(2):331–352. https://doi.org/10.1007/s00291-013-0348-1
Kara I (2011) Arc based integer programming formulations for the distance constrained vehicle routing problem. In: 2011 3rd IEEE international symposium on logistics and industrial informatics (LINDI). pp 33–38. https://doi.org/10.1109/LINDI.2011.6031159
Karaoglan I, Altiparmak F, Kara I, Dengiz B (2009) Vehicle routing problem with simultaneous pickup and delivery: mixed integer programming formulations and comparative analyses. Res Pap. http://w3.gazi.edu.tr/fulyaal/Papers/VRPSPD_MIPFormulations.pdf
Kergosien Y, Lenté C, Billaut JC, Perrin S (2013) Metaheuristic algorithms for solving two interconnected vehicle routing problems in a hospital complex. Comput Oper Res 40(10):2508–2518. https://doi.org/10.1016/j.cor.2013.01.009
Labbé M, Laporte G, Martín IR, González JJS (2004) The ring star problem: polyhedral analysis and exact algorithm. Networks 43(3):177–189. https://doi.org/10.1002/net.10114
Lalla-Ruiz E, Expósito-Izquierdo C, Taheripour S, Voß S (2016) An improved formulation for the multi-depot open vehicle routing problem. OR Spect 38(1):175–187. https://doi.org/10.1007/s00291-015-0408-9
Laport G, Martello S (1990) The selective travelling salesman problem. Discrete Appl Math 26(2):193–207. https://doi.org/10.1016/0166-218X(90)90100-Q
Lee Y, Chiu SY, Ryan J (1996) A branch and cut algorithm for a Steiner tree-star problem. INFORMS J Comput 8(3):194–201. https://doi.org/10.1287/ijoc.8.3.194
Lourenço HR, Martin OC, Stutzle T (2003) Iterated local search. Int Ser Oper Res Manag Sci 146:321–354
Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100. https://doi.org/10.1016/S0305-0548(97)00031-2
Montané FAT, Galvao RD (2006) A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Comput Oper Res 33(3):595–619. https://doi.org/10.1016/j.cor.2004.07.009
Naji-Azimi Z, Salari M (2014) The time constrained maximal covering salesman problem. Appl Math Model 38(15):3945–3957. https://doi.org/10.1016/j.apm.2014.01.001
Pirkul H, Schilling DA (1991) The maximal covering location problem with capacities on total workload. Manag Sci 37(2):233–248. https://doi.org/10.1287/mnsc.37.2.233
Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34(8):2403–2435. https://doi.org/10.1016/j.cor.2005.09.012
Potvin JY, Rousseau JM (1993) A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. Eur J Oper Res 66(3):331–340. https://doi.org/10.1016/0377-2217(93)90221-8
Reinelt G (1991) A traveling salesman problem library. ORSA J Comput 3(4):376–384. https://doi.org/10.1287/ijoc.3.4.376
Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper Res 35(2):254–265. https://doi.org/10.1287/opre.35.2.254
Sörensen K, Schittekat P (2013) Statistical analysis of distance-based path relinking for the capacitated vehicle routing problem. Comput Oper Res 40(12):3197–3205. https://doi.org/10.1016/j.cor.2013.02.005
Souffriau W, Vansteenwegen P, Vanden Berghe G, Van Oudheusden D (2013) The multiconstraint team orienteering problem with multiple time windows. Transp Sci 47(1):53–63. https://doi.org/10.1287/trsc.1110.0377
Sundar K, Rathinam S (2017) Multiple depot ring star problem: a polyhedral study and an exact algorithm. J Glob Optim. 67(3):527–551. https://doi.org/10.1007/s10898-016-0431-7
Toth P, Vigo D (2001) The vehicle routing problem. Society for Industrial and Applied Mathematics, Philadelphia
Tsiligirides T (1984) Heuristic methods applied to orienteering. J Oper Res Soc 35(9):797–809. https://doi.org/10.2307/2582629
Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D (2009) Iterated local search for the team orienteering problem with time windows. Comput Oper Res 36(12):3281–3290. https://doi.org/10.1016/j.cor.2009.03.008
Vansteenwegen P, Souffriau W, Van Oudheusden D (2011) The orienteering problem: a survey. Eur J Oper Res 209(1):1–10. https://doi.org/10.1016/j.ejor.2010.03.045
Wasner M, Zäpfel G (2004) An integrated multi-depot hub-location vehicle routing model for network planning of parcel service. Int J Prod Econ 90(3):403–419. https://doi.org/10.1016/j.ijpe.2003.12.002
Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. https://doi.org/10.2307/3001968
Zachariadis EE, Kiranoudis CT (2011) Local search for the undirected capacitated arc routing problem with profits. Eur J Oper Res 210(2):358–367. https://doi.org/10.1016/j.ejor.2010.09.039
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
See Tables 12.
Appendix 2
Rights and permissions
About this article
Cite this article
Amiri, A., Salari, M. Time-constrained maximal covering routing problem. OR Spectrum 41, 415–468 (2019). https://doi.org/10.1007/s00291-018-0541-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00291-018-0541-3