Skip to main content
Log in

Justification of the Ginzburg–Landau Approximation in Case of Marginally Stable Long Waves

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The Ginzburg–Landau equation can be derived via multiple-scaling analysis as a universal amplitude equation for the description of bifurcating solutions in spatially extended pattern-forming systems close to the first instability. Here we are interested in approximation results showing that there are solutions of the pattern-forming system which behave as predicted by the Ginzburg–Landau equation. In the classical case the proof of the approximation result is based on the fact that the quadratic interaction of the critical modes, i.e., of the modes with positive or zero growth rates, gives only non-critical modes, i.e., modes which are damped with some exponential rate. It is the purpose of this paper to develop a method to handle a situation when this condition is violated by an additional curve of stable eigenvalues which possesses a vanishing real part at the Fourier wave number k=0 for all values of the bifurcation parameter. The investigations are motivated by the Bénard–Marangoni problem and short-wave instabilities in the flow down an inclined plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin, T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574 (1957)

    Article  MathSciNet  Google Scholar 

  • Bitzer, J., Schneider, G.: Approximation and attractivity properties of the degenerated Ginzburg–Landau equation. J. Math. Anal. Appl. 331(2), 743–778 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Collet, P., Eckmann, J.-P.: The time dependent amplitude equation for the Swift–Hohenberg problem. Commun. Math. Phys. 132(1), 139–153 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Eckhaus, W.: The Ginzburg–Landau manifold is an attractor. J. Nonlinear Sci. 3(3), 329–348 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Floryan, J.M., Davis, S.H., Kelly, R.E.: Instabilities of a liquid film flowing down a slightly inclined plane. Phys. Fluids 30(4), 983–989, (1987)

    Article  Google Scholar 

  • Gallay, T., Schneider, G.: KP description of unidirectional long waves. The model case. Proc. R. Soc. Edinb. Sect. A 131(4), 885–898 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Kirrmann, P., Schneider, G., Mielke, A.: The validity of modulation equations for extended systems with cubic nonlinearities. Proc. R. Soc. Edinb. Sect. A 122(1–2), 85–91 (1992)

    MATH  MathSciNet  Google Scholar 

  • Lin, S.P.: Instability of a liquid film flowing down an inclined plane. Phys. Fluids 10(2), 308–313 (1967)

    Article  Google Scholar 

  • Melbourne, I.: Derivation of the time-dependent Ginzburg–Landau equation on the line. J. Nonlinear Sci. 8(1), 1–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Melbourne, I.: Ginzburg–Landau theory and symmetry. In: Nonlinear Instability, Chaos and Turbulence, Vol. II. Adv. Fluid Mech., vol. 25, pp. 79–109. WIT Press, Southampton (2000)

    Google Scholar 

  • Mielke, A.: Reduction of PDEs on domains with several unbounded directions: a first step towards modulation equations. Z. Angew. Math. Phys. 43(3), 449–470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Mielke, A., Schneider, G.: Attractors for modulation equations on unbounded domains—existence and comparison. Nonlinearity 8(5), 743–768 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4(5), 489–500 (1958)

    Article  MATH  Google Scholar 

  • Schneider, G.: Error estimates for the Ginzburg–Landau approximation. Z. Angew. Math. Phys. 45(3), 433–457 (1994a)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, G.: Global existence via Ginzburg–Landau formalism and pseudo-orbits of Ginzburg–Landau approximations. Commun. Math. Phys. 164(1), 157–179 (1994b)

    Article  MATH  Google Scholar 

  • Schneider, G.: A new estimate for the Ginzburg–Landau approximation on the real axis. J. Nonlinear Sci. 4(1), 23–34 (1994c)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, G.: Analyticity of Ginzburg–Landau modes. J. Differ. Equ. 121(2), 233–257 (1995a)

    Article  MATH  Google Scholar 

  • Schneider, G.: Validity and limitation of the Newell–Whitehead equation. Math. Nachr. 176, 249–263 (1995b)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, G.: Justification of mean-field coupled modulation equations. Proc. R. Soc. Edinb. Sect. A 127(3), 639–650 (1997)

    MATH  Google Scholar 

  • Schneider, G.: Hopf bifurcation in spatially extended reaction–diffusion systems. J. Nonlinear Sci. 8(1), 17–41 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, G.: Cahn–Hilliard description of secondary flows of a viscous incompressible fluid in an unbounded domain. Z. Angew. Math. Mech. 79(9), 615–626 (1999a)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, G.: Global existence results for pattern forming processes in infinite cylindrical domains—applications to 3D Navier–Stokes problems. J. Math. Pures Appl. (9) 78(3), 265–312 (1999b)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, G.: Some characterizations of the Taylor–Couette attractor. Differ. Integral Equ. 12(6), 913–926 (1999c)

    MATH  Google Scholar 

  • Schneider, G., Uecker, H.: The amplitude equations for the first instability of electro-convection in nematic liquid crystals in the case of two unbounded space directions. Nonlinearity 20(6), 1361–1386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Takashima, M.: Surface tension driven instability in a horizontal liquid layer with a deformable free surface. I. Stationary convection. J. Phys. Soc. Jpn. 50(8), 2745–2750 (1981)

    Article  Google Scholar 

  • Takáč, P., Bollerman, P., Doelman, A., van Harten, A., Titi, E.S.: Analyticity of essentially bounded solutions to semilinear parabolic systems and validity of the Ginzburg–Landau equation. SIAM J. Math. Anal. 27(2), 424–448 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • van Harten, A.: On the validity of the Ginzburg–Landau equation. J. Nonlinear Sci. 1(4), 397–422 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Woods, D.R., Lin, S.P.: Critical angle of shear wave instability in a film. J. Appl. Mech. 63(4), 1051–1052 (1996)

    Article  MATH  Google Scholar 

  • Yih, C.: Stability of liquid flow down an inclined plane. Phys. Fluids 6(3), 321–334 (1963)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Schneider.

Additional information

Communicated by G. Iooss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häcker, T., Schneider, G. & Zimmermann, D. Justification of the Ginzburg–Landau Approximation in Case of Marginally Stable Long Waves. J Nonlinear Sci 21, 93–113 (2011). https://doi.org/10.1007/s00332-010-9077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9077-7

Keywords

Mathematics Subject Classification (2000)